A= 2023/1.2+2023/2.3+2023/3.4+...+2023/2022.2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5.3²⁰²³ = 50.3²⁰²³ - 5.9ˣ
5.9ˣ = 50.3²⁰²³ - 5.3²⁰²³
5.(3²)ˣ = 5.3²⁰²³.(10 - 1)
5.(3²)ˣ = 5.3²⁰²³.9
3²ˣ = 3²⁰²³.3²
3²ˣ = 3²⁰²⁵
2x = 2025
x = 2025/2
b) 2.3ˣ + 5.3ˣ⁺¹ = 153
3ˣ.(2 + 5.3) = 153
3ˣ.17 = 153
3ˣ = 153/17
3ˣ = 9
3ˣ = 3²
x = 2
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2023}=\dfrac{1}{a+b+c}\)
\(\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right)=0\)
\(\left(a+b\right)\left[\dfrac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right]=0\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Đến đây bạn thay vào nữa là được nhé
Cho \(A=\dfrac{2023^{30}+5}{2023^{31}+5}\) và \(B=\dfrac{2023^{31}+5}{2023^{32}+5}\). So sánh A và B
Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )
Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)
⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B
Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)
\(=1+\dfrac{2022.5}{2023^{31}+5}\)
Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)
\(=1+\dfrac{2022.5}{2023^{32}+5}\)
Dễ thấy 202331 + 5 < 202332 + 5
\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)
\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)
\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B
2030 × 4 +2023 × 2 + 3 × 2023
=8120 + 4046 + 6069
=18235
= 4x2023+2023x2+2023 x1 + 3x2023
=2023x (4+2+3+1)
= 2023 x 10
= 20230
cảm ơn bạn đã đọc!
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
\(A=\dfrac{2023}{1\cdot2}+\dfrac{2023}{2\cdot3}+...+\dfrac{2023}{2022\cdot2023}\)
\(=2023\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=2023\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=2023\left(1-\dfrac{1}{2023}\right)=2023\cdot\dfrac{2022}{2023}=2022\)
\(A=\dfrac{2023}{1.2}+\dfrac{2023}{2.3}+\dfrac{2023}{3.4}+...+\dfrac{2023}{2022.2023}\)
\(A=\dfrac{2023}{1}.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2022.2023}\right)\)
\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2023}\right)\)
\(A=\dfrac{2023}{1}.\dfrac{2022}{2023}\)
\(A=1.2022\)
\(A=2022\)
Vậy \(A=2022\)