K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có \(\frac{1}{5^2}>\frac{1}{5\times6}\)

Tương tự với các cái còn lại

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+.....+\frac{1}{100^2}>\frac{1}{5\times6}+.....+\frac{1}{100\times101}\)

\(\frac{1}{5\times6}=\frac{1}{5}-\frac{1}{6}....\\ \)

\(\Rightarrow\frac{1}{5\times6}+.....+\frac{1}{100\times101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}\)

\(\frac{1}{101}< \frac{1}{30}\Rightarrow\frac{1}{5}-\frac{1}{100}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)

\(\Rightarrow\)DCMM vế 1

21 tháng 10 2017

neu bot mot canh hinnh vuong di 7 m va bot mot canh khac di 25 m thi duoc mot hinh chu nhat co chieu dai gap 3 lan chieu rong tinh chu vi va dien h hinh vuong

13 tháng 8 2021

Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5.6};\dfrac{1}{6^2}>\dfrac{1}{6.7};...;\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{96}{505}>\dfrac{1}{6}\) (1)

Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4.5};\dfrac{1}{6^2}< \dfrac{1}{5.6};\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (2)

Từ (1) và (2)⇒\(\dfrac{1}{6}< B< \dfrac{1}{4}\)

 

 

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

5 tháng 7 2016

a)×+1/ 53 + ×+2 /52 + ×+3/ 51+3 = 0

\(\Rightarrow\frac{x+1}{53}+1+\frac{x+2}{52}+1+\frac{x+3}{51}+1+\frac{3\left(x+54\right)}{\left(x+54\right)}=0\)

\(\Rightarrow\frac{x+54}{53}+\frac{x+54}{52}+\frac{x+54}{51}+\frac{x+54}{\frac{1}{3}\left(x+54\right)}=0\)

\(\Rightarrow\left(x+54\right)\left(\frac{1}{53}+\frac{1}{52}+\frac{1}{51}+\frac{1}{\frac{1}{3}\left(x+54\right)}\right)=0\)

\(\Rightarrow x+54=0\).Do \(\frac{1}{53}+\frac{1}{52}+\frac{1}{51}+\frac{1}{\frac{1}{3}\left(x+54\right)}\ne0\)

=>x=-54

b)×-2/ 72 + ×-3/ 71 + ×-4/ 70 -3 = 0

\(\Rightarrow\frac{x-2}{72}-1+\frac{x-3}{71}-1+\frac{x-4}{70}-1-\frac{3\left(x-74\right)}{x-74}=0\)

\(\Rightarrow\frac{x-74}{72}+\frac{x-74}{71}+\frac{x-74}{70}-\frac{x-74}{\frac{1}{3}\left(x-74\right)}=0\)

\(\Rightarrow\left(x-74\right)\left(\frac{1}{72}+\frac{1}{71}+\frac{1}{70}-\frac{1}{\frac{1}{3}\left(x-74\right)}\right)=0\)

\(\Rightarrow x-74=0\).Do \(\frac{1}{72}+\frac{1}{71}+\frac{1}{70}-\frac{1}{\frac{1}{3}\left(x-74\right)}\ne0\)

=>x=74

c)×+5/ 81 + ×+4/ 41 + ×-7/ 31 + 6 = 0

\(\Rightarrow\frac{x+5}{81}+1+\frac{x+4}{41}+2+\frac{x-7}{31}+3+\frac{6\left(x+86\right)}{x+86}=0\)

\(\Rightarrow\frac{x+86}{81}+\frac{x+86}{41}+\frac{x+86}{31}+\frac{x+86}{\frac{1}{6}\left(x+86\right)}=0\)

\(\Rightarrow\left(x+86\right)\left(\frac{1}{81}+\frac{1}{41}+\frac{1}{31}+\frac{1}{\frac{1}{6}\left(x+86\right)}\right)=0\)

\(\Rightarrow x+86=0\).Do \(\frac{1}{81}+\frac{1}{41}+\frac{1}{31}+\frac{1}{\frac{1}{6}\left(x+86\right)}\ne0\)

=>x=-86

d)tương tự nhé

13 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)

\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{49\cdot50}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1-\frac{1}{50}\)

\(\Rightarrow A< 1\Rightarrow1+A< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\cdot\left(1+A\right)< \frac{1}{2^2}\cdot2=\frac{1}{2}\)(đpcm)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Đặt  \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2140.2141}\)

Có \(\frac{1}{2^3}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};...;\frac{1}{2140^3}< \frac{1}{2140.2141}\)

\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\). Từ đó ta tính được A

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2140}-\frac{1}{2141}\)

\(A=\frac{1}{2}-\frac{1}{2141}\Rightarrow A>\frac{1}{2}\). Mà \(\frac{1}{2}< \frac{2}{3}\Rightarrow A< \frac{2}{3}\)

Có \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\Rightarrow\)\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< \frac{2}{3}\)