cho a,b,c duong cho a,b,c tm 1/a+1/b+1/c=3 tim max P=1/a^4+b
^2+1 +1/b^4+c^2+1 +1/c^4+b^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c > 0 , tm a +b +c = 1 . CM : \(a^4/(a^3 + b^3) + b^4/(b^3 + c^3 )+ c^4/(c^3 + a^3) >= 1/2\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Câu 1: a)
b) Áp dụng Bđt Holder ta có:
\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)
Dấu = khi a=b=c
Câu 2:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)
Dấu = khi \(a=b=\frac{1}{2}\)
Câu 3:
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)
Dấu = khi \(a=b=c=\frac{1}{3}\)
Câu 4: nghĩ sau
Từ giả thiết: \(3=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\Rightarrow abc\ge1\)
Lại có:
\(a^2b^2+b^2c^2+c^2a^2\ge3\sqrt[3]{a^2b^2.b^2c^2.c^2a^2}=3\sqrt[3]{\left(abc\right)^4}\ge3\sqrt[3]{1^4}=3\)
\(\Rightarrow6\le2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Áp dụng BĐT Bunhiacopxki:
\(\left(a^4+b^4+1\right)\left(1+1+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^4+b^4+1}\le\dfrac{c^4+2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự: \(\dfrac{1}{b^4+c^4+1}\le\dfrac{a^4+2}{\left(a^2+b^2+c^2\right)^2}\)
\(\dfrac{1}{c^4+a^4+1}\le\dfrac{b^4+2}{\left(a^2+b^2+c^2\right)^2}\)
Cộng vế: \(\Rightarrow P\le\dfrac{a^4+b^4+c^4+6}{\left(a^2+b^2+c^2\right)^2}\le\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+b^2+c^2\right)^2}=1\)
\(P_{max}=1\) khi \(a=b=c=1\)