Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E nằm trên cạnh AC sao cho BD= CE. Chứng minh:
a) tam giác BID= tam giác CIE
B) AI là tia phân giác của góc BAC
c) AI vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=\(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
e) MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=\(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
Để chứng minh AI vuông góc với BC bạn hãy kéo dài AI cắt BC tại 1 điểm nào đó(VD:K).Sau dó chứng minh AKB=AKC=90 độ.
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=\(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
e) MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC