K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5

b; \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) - \(\dfrac{1}{4.8}\)

=  \(\dfrac{2}{3}\) x \(\dfrac{2}{1}\)  - \(\dfrac{1}{32}\)

\(\dfrac{4}{3}\) - \(\dfrac{1}{32}\)

\(\dfrac{125}{96}\)

\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)

\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)

Xét vế phải :

\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

11 tháng 6 2020

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}=\frac{1.2.3...999}{2.3.4...1000}=\frac{1}{1000}\)

\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}=\frac{3.8.15...2499}{4.9.16....2500}=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4...50.50}=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

\(\frac{1.51}{50.2}=\frac{51}{100}\)

11 tháng 6 2020

a. \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\)

\(A=\frac{1\cdot2\cdot3\cdot....\cdot998}{2\cdot3\cdot4\cdot....\cdot999}=\frac{1}{999}\)

Vậy \(A=\frac{1}{999}\)

16 tháng 9 2018

a) Có \(\dfrac{2^8.9^2}{6^4.8^2}\)=\(\dfrac{2^8.3^4}{3^4.2^42^6}\)=\(\dfrac{2^8.3^4}{3^4.2^{10}}\)=\(\dfrac{2^8}{2^{10}}\)=\(\dfrac{1}{4}\)

b) Có \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right).2^3\)

= \(\dfrac{2^{-1}+3^{-1}}{2^{-1}-3^{-1}}+2^{-1}.2^3\)

=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}}{\dfrac{1}{2}-\dfrac{1}{3}}+\dfrac{1}{2}.2^3\)

= \(\dfrac{\dfrac{5}{6}}{\dfrac{1}{6}}+2^2\)=5+8=13

14 tháng 10

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)...\(\dfrac{9999}{10000}\)

A = \(\dfrac{1.3.2.4..3.5......99.101}{2.2.3.3.4.4....100.100}\)

A = \(\dfrac{1.2.3..4.5.....99}{2.3.4.5.....99.100}\).\(\dfrac{3.4.5....100.101}{2.3.4.5...100}\)

A = \(\dfrac{1}{100}\).\(\dfrac{101}{2}\)

A = \(\dfrac{101}{200}\)

14 tháng 10

2; B = (1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{8}\))...(1 - \(\dfrac{1}{n+1}\))

   Xem lại đề bài.

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\ =\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\ =-\frac{1.2.3.4....998.999}{2.3.4...1000}\\ =-\frac{1}{1000}\)

AH
Akai Haruma
Giáo viên
14 tháng 9

Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.

----------------------

$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$

$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$

$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$

$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$

13 tháng 7 2015

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{2003}-1\right)\)

=\(\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}.....\frac{-2002}{2003}\)

=\(\frac{1}{2003}\)

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)

=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)

=\(\frac{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)

=\(\frac{101}{100.2}\)

=\(\frac{101}{200}\)

31 tháng 3 2019

Đặt\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)\(>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(mỗi cái trong ngoặc là một trăm phân số)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\left(\frac{1}{200}\right).100+\left(\frac{1}{300}\right).100\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A>\frac{5}{6}\)

Mà 5/6>2/3=>A>2/3

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Vì \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{103}+.....\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}\right)\)

Tự làm tiếp nhé !!!

 
3 tháng 9 2015

3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50

14 tháng 10

a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)

 = 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))

= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))

= 5.\(\dfrac{5}{12}\)

\(\dfrac{25}{12}\)