Cho tam giác ABC vuông cân tại A có đường cao AH . Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=CE. Gọi I là trung điểm của DE . CMR:
a,HD=HE
b, IA=IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *Chứng minh HD = HE.
Tam giác ABC cân tại A có đường cao AH xuất phát từ đỉnh A nên đồng thời là đường phân giác.
\(\Rightarrow\)^HAB = ^HAC mà D \(\in\)AB, E \(\in\)AC nên ^HAD = ^HAE . Từ đây dễ c/m \(\Delta\)HEA = \(\Delta\) HDA (c.g.c)\(\Rightarrow\) HD = HE (hai cạnh tương ứng)
*Chứng minh IA = IH: Có gì sai không bạn? Vẽ hình ra thấy rõ ràng nó không bằng nhau rồi mà? (đó chính là lí do mình ko để điểm I trong hình bên trên). Nếu đề vẫn đúng thì mình chịu nha!
đề có gì đó sai sai, điểm D k phải trung điểm của AB, E không phải là TĐ của AC do đó không cách đều A nên không cm được câu a. Bạn nên xem lại đề hoặc nên vẽ hình ra đi
a: Xét ΔAHE vuông tại H và ΔADE vuông tại D có
AE chung
AH=AD
=>ΔAHE=ΔADE
=>HE=DE và góc EAH=góc DAE
=>AE là phân giác của góc DAH
AH=AD
EH=ED
=>AE là trung trực của HD
=>I là trung điểm của HD
=>IH=ID
b: Xét ΔEHF vuông tại H và ΔEDC vuông tại D có
EH=ED
góc HEF=góc DEC
=>ΔEHF=ΔEDC
=>EF=EC
a:
ΔABC cân tại A có AH là đường cao
nên AH là trung trực của BC
I nằm trên trung trực của AB
=>IA=IB
I nằm trên trung trực của BC
=>IB=IC
=>IA=IC
b: IA=IC
=>góc IAC=góc ICA
=>góc ICE=góc IAD
Xét ΔIEC và ΔIDA có
CE=DA
góc ICE=góc IAD
IC=IA
=>ΔIEC=ΔIDA
=>IE=ID
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Giải:
HÌNH TỰ VẼ
Qua \(I\) và \(D\), kẻ IN song song với \(BC;DM\) song song với \(BC\) \(\left(M;N\in AC\right)\)
Do \(\Delta ABC\) cân nên \(\Delta AMD\) cân.
\(\Rightarrow AM=AD\Rightarrow AM=CE\) \(\left(1\right)\)
Mặt khác \(IN\) song song với \(BC\) nên \(IN\) song song với \(MD\).
Xét \(\Delta EMD\) có \(I\) là trung điểm của \(DE\), \(IN\) song song với \(MD\) nên \(N\) là trung điểm của \(ME\). \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) => \(N\) là trung điểm của \(AC\) .
Xét\(\Delta ACK\) có \(N\) là trung điểm của \(AC\). \(NI\) song song với \(CK\) nên \(I\) là trung điểm của \(AK\).\(\left(\text{đ}pcm\right)\)
Tham khảo nha:
Giải:
Qua I và D , kẻ IN song song với BC, DM song song với BC (M,N thuộc AC).
Do △ABC△ABC cân nên △AMD△AMD cân => AM=AD => AM=CE (1)
Mặt khác IN song song với BC nên IN song song với MD.
Xét △EMD△EMD có I là trung điểm của DE , IN song song với MD nên N là trung điểm của ME. (2)
Từ (1) và (2) => N là trung điểm của AC .
Xét △ACK△ACK có N là trung điểm của AC. NI song song vs CK nên I là trung điểm của AK.
(dpcm)
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) cung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
Do đó: ΔDBC=ΔECB
Xét ΔHDB và ΔHEC có
\(\widehat{HDB}=\widehat{HEC}\)
DB=EC
\(\widehat{HBD}=\widehat{HCE}\)
Do đó:ΔHBD=ΔHCE
c: Ta có: ΔHBD=ΔHCE
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
DO đó ΔABH=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
d:Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
e: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
lần tthe
hiếu quýnh