cho M= 1/3^2 + 1/5^2 + 1/7^2 +....+ 1/121^2. CM: M<5/18
Giúp e bài này với ạ! Em đang cần gấp, em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a) \(\left(6-\frac{2}{3}+\frac{1}{2}\right)\)- \(\left(5+\frac{5}{3}-\frac{2}{3}\right)\)- \(\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
= \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{2}{3}-3+\frac{7}{3}-\frac{5}{2}\)
= \(-2+\frac{2}{3}-\frac{4}{2}\)
= \(\frac{-12}{6}+\frac{4}{6}-\frac{12}{6}\)= \(\frac{4}{6}=\frac{2}{3}\)
a/\(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{2}{3}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)..\)
\(=\left(6-\frac{1}{6}\right)-\left(5+1\right)-\left(3-\frac{-1}{6}\right)\)
\(=6-\frac{1}{6}-\left(5+1\right)-3-\frac{1}{6}\)
\(=\left[6-\left(5+1\right)\right]-\frac{1}{6}-\frac{1}{6}-3\)
\(=0-\frac{1}{6}-\frac{1}{6}-3\)
\(=\frac{-1}{6}-\frac{1}{6}-3\)
\(=\frac{-10}{3}\)
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=3x-7\\x+2=-3x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=-2-7\\x+3x=-2+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Mấy câu kia tương tự.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left(x+2-3x+7\right)\left(x+2+3x-7\right)=0\)
\(\Leftrightarrow\left(-2x+9\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+9=0\\4x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9}{-2}=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{9}{2}\) hoặc \(x=\dfrac{5}{4}\)
b) lộn đề à
c) \(25\left(x-3\right)^2-49\left(2x+1\right)^2=0\)
\(\Leftrightarrow5^2\left(x-3\right)^2-7^2\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[5\left(x-3\right)\right]^2-\left[7\left(2x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(5x-15\right)^2-\left(14x+7\right)^2=0\)
\(\Leftrightarrow\left(5x-15-14x-7\right)\left(5x-15+14x+7\right)=0\)
\(\Leftrightarrow\left(-9x-22\right)\left(19x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x-22=0\\19x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x=22\\19x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{22}{-9}=\dfrac{-22}{9}\\x=\dfrac{8}{19}\end{matrix}\right.\)
Vậy \(x=\dfrac{-22}{9}\) hoặc \(x=\dfrac{8}{19}\)
d) \(9\left(3x-2\right)^2=121\left(1-4x\right)^2\)
\(\Leftrightarrow9\left(3x-2\right)^2-121\left(1-4x\right)^2=0\)
\(\Leftrightarrow3^2\left(3x-2\right)^2-11^2\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left[3\left(3x-2\right)\right]^2-\left[11\left(1-4x\right)\right]^2=0\)
\(\Leftrightarrow\left(9x-6\right)^2-\left(11-44x\right)^2=0\)
\(\Leftrightarrow\left(9x-6-11+44x\right)\left(9x-6+11-44x\right)=0\)
\(\Leftrightarrow\left(53x-17\right)\left(-35x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53x-17=0\\-35x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}53x=17\\-35x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{53}\\x=\dfrac{-5}{-35}=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(x=\dfrac{17}{53}\) hoặc \(x=\dfrac{1}{7}\)
Bài 1: Tính
\(\text{1)}\) \(\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{2}.\dfrac{1}{8}\)
\(=\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{8}.\dfrac{1}{2}\)
\(=\dfrac{5}{8}.\left(\dfrac{7}{30}-\dfrac{1}{2}\right)\)
\(=\dfrac{5}{8}.\dfrac{-4}{15}\)
\(=\dfrac{-1}{6}\)
\(\text{2)}\) \(\dfrac{21}{10}.\dfrac{3}{4}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{63}{40}-\dfrac{21}{10}-\dfrac{3}{4}\)
\(=\dfrac{-21}{40}-\dfrac{3}{4}\)
\(=\dfrac{-51}{40}\)
\(\text{3)}\) \(\dfrac{-4}{11}:\dfrac{-6}{11}\)
\(=\dfrac{-4}{11}.\dfrac{11}{-6}\)
\(=\dfrac{4}{6}\)
\(\text{4)}\) \(\dfrac{2}{7}.\dfrac{14}{3}-1\)
\(=\dfrac{4}{3}-1\)
\(=\dfrac{1}{3}\)
\(\text{5)}\) \(\dfrac{4}{7}:\left(\dfrac{1}{5}.\dfrac{4}{7}\right)\)
\(=\dfrac{4}{7}:\dfrac{1}{5}:\dfrac{4}{7}\)
\(=1:\dfrac{1}{5}\)
\(=5\)
\(\text{6)}\) \(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
\(=3+\dfrac{35}{11}.\dfrac{121}{245}\)
\(=3+\dfrac{11}{7}\)
\(=3\dfrac{11}{7}=\dfrac{32}{7}\)
\(\text{7)}\) \(\left(\dfrac{4}{3}+\dfrac{8}{3}\right).\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)
\(=4.\dfrac{1}{4}:\dfrac{19}{5}\)
\(=1:\dfrac{19}{5}\)
\(=\dfrac{5}{19}\)
\(\text{8)}\) \(\left(\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{\dfrac{1}{9}}{\dfrac{1}{9}}\right):\left(\dfrac{2}{3}+\dfrac{\dfrac{7}{15}}{\dfrac{2}{5}}-\dfrac{1}{6}\right)\)
\(=\left(0+1\right):\left(\dfrac{2}{3}+\dfrac{7}{15}:\dfrac{2}{5}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+\dfrac{7}{6}-\dfrac{1}{6}\right)\)
\(=1:\left(\dfrac{2}{3}+1\right)\)
\(=1:\dfrac{5}{3}\)
\(=\dfrac{3}{5}\)
\(\text{9)}\)
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{75077}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{199}{6613}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\left[\dfrac{3}{50}+\dfrac{9}{2}\right]\)
\(=\dfrac{13235}{13226}:\dfrac{114}{25}\)
\(=\dfrac{330875}{1507764}\)
2. Tìm x
X + 1/2 = 5/6
x=5/6-1/2
x=1/3
3/2 + X = 7/2 + 1/3
3/2+ x =23/6
x =23/6-3/2
x =7/3
X - 1/2 = 9/4
x =9/4+1/2
x =11/4
7/2 - X = 3/4
x =7/2-3/4
x =11/4
X : 1/2 =1/5
x =1/5*1/2
x =1/10
7/8 : X = 1/4 × 1/2
7/8 : x =1/8
x =1/8*7/8
x=7/64
( X -1/2 ) -1/4 = 1/5
x-1/2 =1/5+1/4
x-1/2 =9/20
x =9/20+1/2
x =19/20
Với \(k\in N;k\ne0\) ta có :
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{\left(k+1\right)}}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}\)
\(=\frac{\sqrt{k+1}+\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\)
\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng ta có :
\(M=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)
Ta có:
\(\dfrac{1}{3^2}< \dfrac{1}{3^2-1}=\dfrac{1}{2.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{5^2-1}=\dfrac{1}{4.6}\)
...
\(\dfrac{1}{121^2}< \dfrac{1}{121^2-1}=\dfrac{1}{120.122}\)
Cộng vế:
\(M< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{120.122}\)
\(M< \dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{120.122}\right)\)
\(M< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{120}-\dfrac{1}{122}\right)\)
\(M< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{122}\right)< \dfrac{1}{2}.\dfrac{1}{2}\)
\(M< \dfrac{1}{4}=\dfrac{5}{20}< \dfrac{5}{18}\) (đpcm)