K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
22 tháng 10 2018

1 tháng 1 2019

Chọn C.

Phương pháp

Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng để xác định khoảng cách 

Ta tính SO dựa vào công thức thể tích hình chóp, tính OH dựa vào hệ thức lượng trong tam giác vuông.

Cách giải:

Xét tam giác SOM vuông tại M có OH là đường cao nên theo hệ thức lượng trong tam giác vuông ta có

17 tháng 11 2018

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:

$SA\perp (ABCD)$ nên $45^0=\angle (SB, (ABCD))=\angle (SB, AB)=\widehat{SBA}$

$\Rightarrow SA=AB=5$ (cm)

Thể tích khối chóp $S.ABCD$:

$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.5.5^2=\frac{125}{3}$ (cm3)

3 tháng 7 2018

17 tháng 8 2017

Đáp án B

30 tháng 5 2018

Đáp án D

Gọi O là tâm của hình vuông ABCD, ta có

C D ⫽ S A B ⇒ d S A , C D = d C D , S A B = 2 d O , S A B = a 3

Gọi M là trung điểm của AB,

kẻ O K ⊥ S M tại K

Khi đó

O K ⊥ S A B ⇒ d O , S A B = O K = a 3 2

Xét tam giác vuông SMO, ta có:

1 S O 2 + 1 O M 2 = 1 O K 2 ⇒ S O = a 3

Vậy thể tích khối chóp S.ABCD là:

V = 1 3 S O . S A B C D = 4 3 3 a 3

23 tháng 2 2017