K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sau 45 ngày thì số tiền lãi khách A nhận được là:

\(200000000\cdot0.5\%\cdot\dfrac{45}{365}\simeq123000\left(đồng\right)\)

23 tháng 12 2023

\(2Al+3S\rightarrow Al_2S_3\)(điều kiện: >150 độ C)

\(2Al+3Cl_2\rightarrow2AlCl_3\)

\(4Al+3H_2SO_4\rightarrow2Al_2\left(SO_4\right)_3+3H_2\uparrow\)

\(Al+4HNO_3\rightarrow Al\left(NO_3\right)_3+NO+2H_2O\)

1: (x-1)^2+(y+2)^2=25

=>R=5; I(1;-2)

2: Δ'//Δ nên Δ': 3x-4y+c=0

d(I;Δ')=5

=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)

=>|c+11|=25

=>c=14 hoặc c=-36

=>3x-4y+14=0 hoặc 3x-4y-36=0

3x-4y+14=0 

=>VTPT là (3;-4) và (Δ') đi qua A(2;5)

=>VTCP là (4;3)

=>PTTS là x=2+4t và y=5+3t

3x-4y-36=0

=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)

=>VTCP là (4;3)

PTTS là x=0+4t và y=-9+3t

 

NV
25 tháng 1 2022

Đây là bài tập hay đang kiểm tra đây em? :)

25 tháng 1 2022

đây là đề thi 

23 tháng 1 2022

a, thay x=25 vào A ta có:

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{25}}{\sqrt{25}-1}=\dfrac{5}{5-1}=\dfrac{5}{4}\)

b, \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{x\sqrt{x}-1}-\dfrac{2}{\sqrt{x}-1}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{\sqrt{x^3}-1}-\dfrac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{2x+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}.\dfrac{3x+3-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

 

23 tháng 1 2022

ô

1: vecto AC=(-2;2)

=>VTCP là (-2;2); vtpt là (2;2)

2: vecto AB=(-10;-2)=(5;1)

=>VTPT của Δ là (5;1)

vtcp của Δ là (-1;5)

NV
6 tháng 3 2023

\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt

b.

\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp

22 tháng 9 2021

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{5\sqrt{3}}{2}=\dfrac{5\sqrt{3}}{2}-9\sqrt{3}=\dfrac{5\sqrt{3}-18\sqrt{3}}{2}=\dfrac{-13\sqrt{3}}{2}\)

22 tháng 9 2021

\(=\dfrac{1}{2}.4\sqrt{3}-2.5\sqrt{3}-\sqrt{3}+5.\dfrac{\sqrt{3}}{2}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{5\sqrt{3}}{2}\)

\(=-9\sqrt{3}+\dfrac{5\sqrt{3}}{2}=\dfrac{-18\sqrt{3}+5\sqrt{3}}{2}=-\dfrac{13\sqrt{3}}{2}\)

23 tháng 1 2022

Giải hpt:

Đặt: \(\left[{}\begin{matrix}\sqrt{x-1}=a\\y+1=b\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}3a-2b=-1\\5a-9b=-13\end{matrix}\right.< =>\left\{{}\begin{matrix}15a-10b=-5\\15a-27b=-39\end{matrix}\right.< =>\left\{{}\begin{matrix}b=2\\15a-27\cdot2=-39\end{matrix}\right.< =>\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\)

Thay: \(\left[{}\begin{matrix}\sqrt{x-1}=1\\y+1=2\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

11 tháng 1 2022

21. D - at

22. D - was

23. A - Although

24 B - causes

 

12 tháng 1 2022

21. D - at

22. B - which

23. A - Although

24. B - on