Giả sử x0 là nghiệm của phương trình:
x2 + mx + n = 0 và m2 + n2 = 2017
Chứng minh : | x0 | < √2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b là 2 nghiệm của phương trình x 2 + mx + 1 = 0 nên theo định lí Vi-et ta có:
Vì b,c là 2 nghiệm của phương trình x 2 + nx + 2 = 0 nên theo định lí Vi-et ta có:
Khi đó:
(b – a)(b – c) = b 2 – bc – ab + ac
= b 2 + bc + ab + ac – 2(ab + bc)
= b( b + c) + a (b + c) – 2 (ab + bc)
= (b + c )( b + a) – 2 (ab + bc)
= (-n).(-m) – 2(1 + 2)
= nm – 6
Do x0 là một nghiệm của phương trình nên \(x_0^2+mx_0+n=0\Rightarrow n=-mx_0-x_0^2\)
Thế vào phương trình (2) ta có: \(m^2+\left(-mx_0-x_0^2\right)^2=2017\)
\(\Rightarrow m^2+m^2x_0^2+2mx_0^3+x_0^4-2017=0\)
\(\Rightarrow\left(1+x_0^2\right)m^2+2x_0^3m+\left(x_0^4-2017\right)=0\left(1\right)\)
Để pt (1) có nghiệm thì \(\Delta'\ge0\Rightarrow\left(x_0^3\right)^2-\left(1+x_0^2\right)\left(x_0^4-2017\right)\ge0\)
\(\Rightarrow-x_0^4+2017x_0^2+2017\ge0\)
\(\Rightarrow0\le x_0^2< 2018\Rightarrow\left|x_0\right|< \sqrt{2018}\left(đpcm\right)\)
Điều kiện x ≥ 3, x ∈ N. Phương trình đã cho có dạng:
Suy ra x=12.
Chọn B.
Gọi x 1 , x 2 là nghiệm của x 2 + p x + q = 0
Gọi x 3 , x 4 là nghiệm của x 2 + m x + n = 0
- Khi đó, theo vi-et: x 1 + x 2 = - p ; x 3 + x 4 = - m , x 3 . x 4 = n
- Theo yêu cầu ta có:
x 1 = x 3 3 x 2 = x 4 3 ⇒ x 1 + x 2 = x 3 3 + x 4 3 ⇔ x 1 + x 2 = ( x 3 + x 4 ) 3 − 3 x 3 x 4 ( x 3 + x 4 )
⇒ p = - m 3 + 3 m n ⇒ p = m 3 - 3 m n
Đáp án cần chọn là: C
- Xét hàm số f ( x ) = x 3 + x - 1 , ta có f(0) = -1 và f(1) = 1 nên: f(0).f(1) < 0.
- Mặt khác: f ( x ) = x 3 + x - 1 là hàm đa thức nên liên tục trên [0;1].
- Suy ra f ( x ) = x 3 + x - 1 đồng biến trên R nên phương trình x 3 + x - 1 = 0 có nghiệm duy nhất x 0 ∈ ( 0 ; 1 ) .
- Theo bất đẳng thức Côsi: