K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

D=1/2.[1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20]-3.[1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20]

  =1/2.[1/2-1/380]-3.[1-1/20]

  =1/2.[189/380]-3.[19/20]

  =189/760-57/20

  =189/760-2166/760

  =-1977/760

Nhớ nhak

8 tháng 5 2017

Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)

\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)

Vậy \(A< \dfrac{1}{4}\)

15 tháng 1 2024

quá đỉnh:)

đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)

Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)

\(=3-\frac{3}{20}=\frac{57}{20}\)

\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)

5 tháng 7 2017

Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A

\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)

\(A=\frac{1}{2}.\frac{19}{20}\)

\(A=\frac{19}{40}\)

\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)

\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)

\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)

\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(B=\left[3.\left(\frac{19}{20}\right)\right]\)

\(B=\frac{57}{20}\)

Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)

\(=-\frac{95}{40}=-\frac{19}{8}\)

Nếu đúng thì k nha

20 tháng 3 2016

$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$

5 tháng 5 2017

bài này chịu

2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 1/18.19.20

2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +...+1/18.19 - 1/19.20

2A =  1/1.2 - 1/19.20

2A = 1/2 - 1/19.20

A = (1/2 - 1/19.20) : 2

A = 1/4 - 1/(19.20.2)

MÀ 1/(19.20.2) > 0

nên A<1/4

19 tháng 3 2016

a chứng minh được bài toán tổng quát sau 

2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)] 

Áp dụng: 

ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20 

= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380 

=> A = 189/ 760 < 1/4

24 tháng 3 2017

a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760