Từ các chứ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 8 chữ số sao cho mỗi chữ số có mặt ít nhất một lần và các chữ số chẵn không đứng cạnh nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tm yêu cầu là \(\overline{abcde}\)
a)Th1 giả sử abc,abd,abe,acd,ade,ace=1,2,3=> 2 số còn lại có 5.4 cách chọn=> có tất cả 6.3!.4.5=720 số
Th2 giả sử bcd=1,2,3;cde=1,2,3;bce=1,2,3,bde=1,2,3=>a khác 0=>a có 4 cách chọn và số còn lại có 4 cách chọn=>có tất cả 4.4.3!.4=384 cách
=> có tất cả 720+384 =1104 cách chọn số tm
Chọn 5 chữ số từ 9 chữ số còn lại và hoán vị chúng: \(A_9^5\) cách
5 chữ số đã cho tạo thành 6 khe trống, xếp 3 chữ số 1 vào 6 khe trống đó: \(C_6^3\) cách
\(\Rightarrow A_9^5.C_6^3\) số (bao gồm cả trường hợp số 0 đứng đầu)
Chọn 5 chữ số, trong đó có mặt chữ số 0: \(C_8^4\) cách
Xếp 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách
5 chữ số (trong đó vị trí 0 đứng đầu cố định) tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow\) Tổng cộng có: \(A_9^5.C_6^3-C_8^4.4!.C_5^3\) số thỏa mãn
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Từ đề bài ta suy ra trong 7 chữ số có đúng 1 chữ số có mặt 2 lần, 6 chữ số còn lại có mặt đúng 1 lần
Không gian mẫu: \(7.C_8^2.6!=141120\) số
TH1: chữ số có mặt 2 lần là chữ số lẻ.
Chọn chữ số lẻ lặp 2 lần có: 4 cách
Xếp vị trí cho 4 chữ số lẻ (có 1 số lặp 2 lần): \(C_5^2.3!=60\) cách
5 chữ số lẻ tạo thành 6 khe trống, xếp 3 chữ số chẵn vào 6 khe trống: \(A_6^3\) cách
TH2: chữ số có mặt 2 lần là chữ số chẵn.
Chọn chữ số chẵn có mặt 2 lần: 3 cách
Xếp vị trí cho 4 chữ số lẻ: \(4!\) cách
4 chữ số lẻ tạo thành 5 khe trống, chọn 2 vị trí cho chữ số chẵn lặp 2 lần: \(C_5^2\) cách
Xếp 3 chữ số chẵn còn lại: \(3!\) cách
\(\Rightarrow4.60.A_6^3+3.4!.C_5^2.3!=33120\) số
Xác suất: \(\dfrac{33120}{141120}=\dfrac{23}{98}\)