K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

Ta có :

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)

Theo bất đẳng thức Cô-si ta có :

\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)

Vì \(x+y+z=1\) nên có 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)

Thế vào (1) ta có :

\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)

Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)

 

NV
20 tháng 3 2022

\(\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^2y^2z^2\)

\(\Leftrightarrow3xyz\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^3y^3z^3\)

 \(\Rightarrow\left[{}\begin{matrix}xyz=0\\\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\end{matrix}\right.\)

Nếu \(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\) 

Ta có:

\(x^2-x+1=\dfrac{3}{4}x^2+\left(\dfrac{x}{2}-1\right)^2\ge\dfrac{3}{4}x^2\)

Tương tự: \(y^2-y+1\ge\dfrac{3}{4}y^2\) ; \(z^2-z+1\ge\dfrac{3}{4}z^2\)

Do các vế của các BĐT trên đều không âm, nhân vế với vế ta được:

\(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)\ge\dfrac{27}{64}x^2y^2z^2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\) 

Thế vào  điều kiện \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\) ko thỏa mãn (loại)

Vậy \(xyz=0\)

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

ở bước đầu giải hệ theo m, bạn ko nên nhân với m vì nếu m=0 thì sẽ không giải được

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

19 tháng 1 2022

Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:

\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)

Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:

\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)

           \(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)

Tương tự:    \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)

Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)

 

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết

23 tháng 10 2021

Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)

\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)

Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)

\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)

Mà \(x+y+z=0\Leftrightarrow x=-y-z\)

\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)

Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)

Cộng vế theo vế

\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)

Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Thế vào \(P\)

\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)