Cho tam giác ABC cân tại A
a) giả sử B = 50 độ. Tính số đo A
B) kẻ hai đường cao BN và CM. Chứng minh BN = CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
=>BN=CM
b: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
c: Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
AG cắt BC tại D
DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) xét tứ giác ANMB có góc ANB = góc AMB lại cùng nhìn cạnh AB nên theo cung chứa góc thì tứ giác ANMB nội tiếp
b) có tứ giác ANMB nội tiếp nên góc AMN = góc ABN ( 2 góc nội tiếp cùng chắn cung AN của đường tròn (ANMB)
c) ta có tam giác AMC vuông tại M
góc C = 30 độ thì góc MAC = 60 độ và là góc nội tiếp chắn cung MN
=> góc MAC = 1/2 số đo cung MN
=> số đo cung MN = 2.góc MAC = 2.60 = 120 độ
vậy cung MN = 120 độ
a: ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{B}=80^0\)
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔANB=ΔAMC