Tính nhanh
A=1+1/8+1/24+1/48+1/80+1/120
Trả lời giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 1/2.4 + 1/4.6 + ...... + 1/10.12
2A = 2 + 2/2.4 + 2/4.6 + ...... + 2/10.12
= 2 + 1/2 - 1/4 + 1/4 - 1/6 + ...... + 1/10 - 1/12
= 2 + 1/2 - 1/12 = 29/12
=> A = 29/12 : 2 = 29/24
P/S : Tham khảo nha
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(=1+\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+\dfrac{1}{8\times10}+\dfrac{1}{10\times12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{17}{12}\)
Gọi A=\(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}\)
\(2A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{12}\)
\(2A=1-\frac{1}{12}=\frac{11}{12}\)
\(A=\frac{11}{12}:2=\frac{11}{24}\)
=\(1+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{10\cdot12}\)
\(=1+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{12}\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{5}{12}=1+\dfrac{5}{24}=\dfrac{29}{24}\)
=1+12⋅4+14⋅6+...+110⋅121+12⋅4+14⋅6+...+110⋅12
=1+12(12−14+14−16+...+110−112)=1+12(12−14+14−16+...+110−112)
=1+12⋅512=1+524=2924
A = 1 + 1/2.4 + 1/4.6 + 1/6.8 + 1/8.10 + 1/10.12
2A = 2 + 2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12
= 2 + 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + 1/8 - 1/10 + 1/10 - 1/12
= 2 + 1/2 - 1/12 = 29/12
=> A = 29/12 : 2 = 29/24
Tk mk nha
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(=\frac{1}{4}.\left(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(2-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\frac{13}{7}=\frac{13}{28}\)
Ta có :
Đặt \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(2A=\frac{1}{2}-\frac{1}{14}\)
\(2A=\frac{7}{14}-\frac{1}{14}=\frac{3}{7}\)
\(A=\frac{3}{7}:2=\frac{3}{14}\)
=> \(\frac{1}{4}+\frac{3}{14}=\frac{7}{28}+\frac{6}{28}=\frac{13}{28}\)
Ủng hộ mk nha !!! ^_^
Ta có: \(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(\Leftrightarrow2A=2+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}+\dfrac{2}{10\cdot12}\)
\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=\dfrac{24}{12}+\dfrac{6}{12}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=\dfrac{29}{12}\)
hay \(A=\dfrac{29}{24}\)
A=1+18+124+148+180+1120A=1+18+124+148+180+1120
=1+12.4+14.6+16.8+18.10+110.12=1+12.4+14.6+16.8+18.10+110.12
=1+12(12−14+14−16+16−18+18−110+110−112)=1+12(12−14+14−16+16−18+18−110+110−112)
=1+12(12−112)=1+12(12−112)
=1+524=1+524
=2924
Tham khảo thôi nka
2A= 2/8+2/24+2/48+2/80= 2/(2*4)+2/(4*6)+2/(6*8)+2/(8*10)= 1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10= 1/2-1/10= 2/5 =>A= 1/5
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(A=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+\dfrac{1}{10.12}\)
\(2A=\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\)
\(2A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{12}\)
\(2A=1-\dfrac{1}{12}\)
\(2A=\dfrac{11}{12}\)
\(A=\dfrac{11}{12}:2=\dfrac{11}{24}\)
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(=1+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}+\dfrac{1}{10\cdot12}\)
\(=1+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{10\cdot12}\right)\)
\(=1+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{12}\right)\)
\(=1+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{12}\right)=1+\dfrac{1}{2}\cdot\dfrac{5}{12}=1+\dfrac{5}{24}=\dfrac{29}{24}\)