5^2022 + 7^2023 chia cho 7 dư bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+4+4^2+...+4^{2022}+4^{2023}\)
\(A=2+2^2+\left(2^2\right)^2+\left(2^2\right)^3+...+\left(2^2\right)^{2022}+\left(2^2\right)^{2023}\)
\(A=2+2^2+2^4+2^6+...+2^{4046}\)
\(A=2+2^4+\left(2^6+2^8+2^{10}\right)+\left(2^{12}+2^{14}+2^{16}\right)+...+\left(2^{4042}+2^{4044}+2^{4046}\right)\)
\(A=2+2^4+2^6\cdot\left(1+4+16\right)+2^{12}\cdot\left(1+4+16\right)+...+2^{4042}\cdot\left(1+4+16\right)\)
\(A=2+2^4+2^6\cdot21+2^{12}\cdot21+...+2^{4042}\cdot21\)
\(A=2+16+21\cdot\left(2^6+2^{12}+...+2^{4042}\right)\)
\(A=4+14+21\cdot\left(2^6+2^{12}+...+2^{4042}\right)\)
\(A=4+7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\)
Mà: \(7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\) ⋮ 7
⇒ \(A=4+7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\) : 7 dư 4
Vậy: ...
A = 2 + 4 + 4² + ... + 4²⁰²² + 4²⁰²³
= 2 + 4 + (4² + 4³ + 4⁴) + (4⁵ + 4⁶ + 4⁷) + ... + (4²⁰²¹ + 4²⁰²² + 4²⁰²³)
= 6 + 4.(4 + 4² + 4³) + 4⁴.(4 + 4² + 4³) + ... + 4²⁰²⁰.(4 + 4² + 4³)
= 6 + 4.84 + 4⁴.84 + ... + 4²⁰²⁰.84
= 6 + 84.(4 + 4⁴ + ... + 4²⁰²⁰)
= 6 + 7.12.(4 + 4⁴ + ... + 4²⁰²⁰)
Mà 7.12.(4 + 4⁴ + ... + 4²⁰²⁰)
⇒ 6 + 7.12.(4 + 4⁴ + ... + 4²⁰²⁰) chia 7 dư 6
Vậy A chia 7 dư 6
Ta có 2022 : 7 dư -1
=> 2022^124 : 7 dư (-1)^124 hay dư 1
Vậy 2022^124 chia 7 dư 1
Gợi ý bạn nhé
Ý tưởng ở đây là chúng ta sẽ dùng mod nhé
A-B
A = 50+52+54+...52022
52xA=52+54+...52024
24xA = 52024-1
A=\(\dfrac{5^{2024}-1}{24}\)
B = 51+53+...52023
B =5x(50+52+...52022) = 5xA
M = A-B = A-5xA = -4A
M=\(\dfrac{1-5^{2024}}{6}\)
Vậy 24xA - 1 = 52024
Nên 52024 chia cho 3 dư 2
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
sorry cao lộc, đến lúc bạn trả lời thì mình có đáp án rồi
Lời giải:
$5^3\equiv -1\pmod 7$
$\Rightarrow 5^{2022}=(5^3)^{674}\equiv (-1)^{674}\equiv 1\pmod 7$
Và: $7^{2023}\equiv 0\pmod 7$
$\Rightarrow 5^{2022}+7^{2023}\equiv 1+0\equiv 1\pmod 7$
Vậy $5^{2022}+7^{2023}$ chia 7 dư 1