S=1+a+a^2+a^3+....+a^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+a+a2+...+an
=>S.a=a+a2+a3+...+an+1
=>S.a-S=(a+a2+a3+...+an+1)-((1+a+a2+...+an)
=>(a-1)S=an+1-1
=>S=an+1-1/a-1
\(S=a+a^3+...+a^{2n+1}\)
\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)
\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)
\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)
\(S_1=1+a^2+...+a^{2n}\)
\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)
\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)
\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)
a)Do 1980a chia hết cho cả 3 và 5
1995b cũng chia hết cho cả 3 và 5
Vậy 1980a-1995b chia hết cho cả 3 và 5
b)Do a;a+1;a+2 là 3 số tự nhiên liên tiếp
có số chia hết cho 2 hoặc 3
vậy a(a+1)(a+2)chia hết cho 2 và 3
\(S=a+a^2+...+a^n\)
\(a.S=a^2+a^3+...+a^{n+1}\)
\(a.S-S=a^2+a^3+...+a^{n+1}-\left(a+a^2+...+a^n\right)\)
\(S\left(a-1\right)=a^{n+1}-a\)
\(S=\dfrac{a\left(a^n-1\right)}{a-1}\)
Để \(S⋮\left(a+1\right)\Leftrightarrow\dfrac{a\left(a^n-1\right)}{\left(a-1\right)\left(a+1\right)}=\dfrac{a\left(a^n-1\right)}{a^2-1}\)
khi \(\left(a^n-1\right)⋮\left(a^2-1\right)\Rightarrow n=2\)
Ta thấy:
\(a+a^2=a.\left(a+1\right)⋮a+1\)
\(a^3+a^4=a^3.\left(a+1\right)⋮a+1\)
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Ta thấy:
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
\(S=1+a+a^2+a^3+...+a^n\)
\(\Rightarrow aS=a+a^2+a^3+a^4+...+a^{n+1}\)
\(\Rightarrow\left(a-1\right)S=aS-S=\left(a+a^2+a^3+a^4+...+a^{n+1}\right)-\left(1+a+a^2+a^3+...+a^n\right)\)
\(=a^{n+1}-1\)
\(\Rightarrow S=\dfrac{a^{n+1}-1}{a-1}\)
giúp mik vs ak chìu nay mik thi ròi