Tính nhanh 2019.(2020-164)-2020.(2019-164)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/2019)^2020 . 2019^2019
= \(\frac{1}{2019^{2020}}\cdot2019^{2019}\)
= \(\frac{2019^{2019}}{2019^{2020}}\)
=1/2019
vậy.......
hok tốt
2019 . 2021 - 2020. 2020
= 2019(2020+1) - 2020( 2019+1)
= 2019 .2020 + 1.2019 - 2020.2019 + 1.2020
= 2019 -2020
= -1
\(2019.2021-2020.2020\)
\(=2019\left(2020+1\right)-2020\left(2019+1\right)\)
\(=2019.2020+2019-2020.2019+2020\)
\(=2019-2020\)
\(=-1\)
Trả lời :...............................................
\(\frac{4078379}{4078379}\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé Kim Râu La
Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)
\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)
\(\Leftrightarrow A>B\)
\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)
\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
Ta có :
\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A< B\)
Vậy ta được \(A< B\)
2020 × 2021 - 1000 - 2020 × 2019 - 1020
= 2020 × 2021 - 2020 × 2019 - 1000 - 1020
= 2020 × 2021 - 2020 × 2019 - (1000 + 1020)
= 2020 × 2021 - 2020 × 2019 - 2020
= 2020 × 2021 - 2020 × 2019 - 2020 × 1
= 2020 × (2021 - 2019 - 1)
= 2020 × 1
= 2020.
Ta có:
\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)
=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)
Lấy
\(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)
<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)
Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)
=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)
và \(0< \frac{2020}{4039}< 1\)
=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)
=> 0 < a < 1
=> a không phải là một số nguyên.
Tính nhanh:
2019.(2020 - 164) - 2020.(2019 - 164)
= 2019.2020 - 2019.164 - 2020.2019 + 2020 .164
= (2019.2020 - 2020.2019) - (2019.164 - 2020.164)
= 0 - 164.(2019 - 2020)
= -164.(-1)
= 164
2019.(2020 - 164) - 2020.(2019 - 164)
= 2019.2020 - 2019.164 - 2029.2019 + 2020.164
= (2019.2020 - 2020.2019) + (2020.164 - 2019.164)
= 0 + 164.(2020 - 2019)
= 164.1
= 164