K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

20 tháng 12 2022

a: Xét (O) có

CE,CA là các tiếp tuyến

nên CE=CA và OC là phân giác của góc AOE(1)

Xét (O) có

DE,DB là các tiếp tuyến

nên DE=DB vàOD là phân giác của góc BOE(2)

CD=CE+ED

=>CD=CA+BD

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CE*ED=OE^2=R^2=36cm

19 tháng 10 2021

a: Xét (O) có

CE là tiếp tuyến có E là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CE=CA

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DE là tiếp tuyến có E là tiếp điểm

Do đó: DB=DE

Ta có: CD=CE+ED

nên CD=CA+DB

11 tháng 12 2021

a: Xét (O) có 

CE là tiếp tuyến

CA là tiếp tuyến

Do đó: CE=CA

Xét (O) có 

DE là tiếp tuyến

DB là tiếp tuyến

Do đó: DE=DB

Ta có: CE+DE=CD

nên CD=CA+DB

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

a: Xét (O) có

CA,CE là tiếp tuyến

nên CA=CE và OC là phân giác của góc AOE(1)

Xét (O) co

DE,DB là tiép tuyến

nên DE=DB và OD là phân giác của góc BOE(2)

CD=CE+ED

=>CD=CA+DB

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ