Cho tam giác ABC vuông tại A,vẽ đường cao AH a)chứng minh tam giác HBA đồng dạng tam giác ABC b) chứng minh tam giác HBA đồng dạng tam giác HAC suy ra AH bình phường bằng BH.HC c) kẻ HD vuông góc AB và HE vuông góc AC chứng minh tam giác AED đồng dạng tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HB\cdot HC=HA^2\)
c: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
\(\widehat{DAH}\) chung
Do đó: ΔADH~ΔAHB
=>\(\dfrac{AD}{AH}=\dfrac{AH}{AB}\)
=>\(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAEH vuông tại E và ΔAHC vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHC
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)
=>\(AH^2=AE\cdot AC\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE~ΔACB