cho tam giác abc nhọn (ab<ac) đường cao be và cf cắt nhau tại i (e thuộc ac, f thuộc ab)
a, cm tam giác abe đồng dạng với tam giác acf.
b,từ r kẻ đường thẳng song song với cf,từ c kẻ đường thẳng song song với be , hai đường thẳng này cắt nhau tại k. cm bick là hình bình hành và fi/fa=ck/ca
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE~ΔACF
b: Sửa đề: Qua B kẻ song song với CF
Xét tứ giác BICK có
BI//CK
BK//CI
Do đó: BICK là hình bình hành
BI//CK
BI\(\perp\)AC
Do đó: CK\(\perp\)CA
CI//BK
CI\(\perp\)AB
Do đó:BK\(\perp\)BA
Xét tứ giác ABKC có \(\widehat{ABK}+\widehat{ACK}=90^0+90^0=180^0\)
nên ABKC là tứ giác nội tiếp đường tròn đường kính tâm M, đường kính AK
Xét (M) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
Xét ΔAFI vuông tại F và ΔACK vuông tại C có
\(\widehat{FIA}=\widehat{AKC}\left(=\widehat{ABC}\right)\)
Do đó: ΔAFI~ΔACK
=>\(\dfrac{FA}{CA}=\dfrac{FI}{CK}\)
=>\(\dfrac{FI}{FA}=\dfrac{CK}{CA}\)