K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAF và ΔDBE có

DA=DB

\(\widehat{ADF}\) chung

DF=DE

Do đó: ΔDAF=ΔDBE

b: Ta có: DA+AE=DE

DB+BF=DF

mà DA=DB và DE=DF

nên AE=BF

Xét ΔAEF và ΔBFE có

AE=BF

\(\widehat{AEF}=\widehat{BFE}\)

FE chung

Do đó: ΔAEF=ΔBFE

=>\(\widehat{AFE}=\widehat{BEF}\)

=>\(\widehat{IEF}=\widehat{IFE}\)

=>IE=IF

Xét ΔDEI và ΔDFI có

DE=DF

EI=FI

DI chung

Do đó: ΔDEI=ΔDFI

=>\(\widehat{EDI}=\widehat{FDI}\)

=>DI là phân giác của góc EDF

26 tháng 3 2018

Ai giúp mk giải vs

24 tháng 12 2021

🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲

18 tháng 4 2021

help meeeeeee !!!!

5 tháng 4 2022

a, Ta có : \(AD=AE\left(gt\right)\)

→ ΔADE là tam giác cân ở A

\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)

Mà ΔABC cũng là tam giác cân 

\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)

mà  2 góc này ở vị trí so le  trong

\(\Rightarrow DE//BC\)

b, Xét ΔABE và ΔACD có :

\(AB=AC\left(\Delta ABC\cdot cân\right)\)

\(\widehat{A}:chung\)

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)

c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.

Mà ΔABC cân ở A

→ AK là đường trung tuyến của tam giác ABC

→ AI cũng là đường trung tuyến của tam giác ABC

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

6 tháng 1 2022

a) Xét tam giác DEA và tam giác DFA:

+ DA chung.

+ DE = DF (gt).

+ EA = FA (A là trung điểm của EF).

\(\Rightarrow\) Tam giác DEA = Tam giác DFA (c - c - c).

b) Xét tam giác ABC: DE = DF (gt).

\(\Rightarrow\) Tam giác DEF cân tại D.

Mà DA là đường trung tuyến (A là trung điểm EF).

\(\Rightarrow\) DA là đường phân giác (Tính chất tam giác cân).

Xét tam giác DBA và tam giác DCA:

+ DA chung.

+ DB = DC (gt).

\(\widehat{BDA}=\widehat{CDA}\) (DA là đường phân giác).

\(\Rightarrow\) Tam giác DBA = Tam giác DCA (c - g - c). 

 
6 tháng 1 2022

Thank you so much 🥰

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

Xét ΔADF và ΔEDC có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=CE