viết biểu thức sau dưới dạng lũy thừa 9.3 mũ 2 .1/81.27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(9.3^2.\frac{1}{81}.27=\frac{9.3^2.27}{81}=\frac{3^2.3^2.3^3}{3^4}=\frac{3^7}{3^4}=3^3\)
b/
\(4.32:\left(2^3.\frac{1}{16}\right)=4.32:\left(\frac{2^3}{16}\right)=4.32:\left(\frac{2^3}{2^4}\right)=4.32:\frac{1}{2}=4.32.2=4.64=4.4^3=4^4\)
c/
\(3^4.3^5:\frac{1}{27}=3^4.3^5.27=3^4.3^5.3^3=3^{12}\)
d/(ý bạn là (-2)^2 hay -2^2 , mình làm theo cách (-2)^2 nhé!)
\(2^2.4.\frac{32}{\left(-2\right)^2}.2^5=2^2.2^2.\frac{2^5}{2^2}.2^5=2^2.2^2.2^3.2^5=2^{12}\)
a) \(2.4.16.32.2^4=2.2^2.2^4.2^5.2^4=2^{16}\)
b) \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)=\left(2^2.2^5\right):\left(2^3.\left(\frac{1}{2}\right)^4\right)=2^7:\frac{1}{2}=2^8\)
c) \(9.3^3.\frac{1}{81}.27=3^2.3^3.\left(\frac{1}{3}\right)^4.3^3=3^4\)
d)\(2^2.4.\frac{32}{2^2}.2^5=2^2.2^2.2^3.2^5=2^{12}\)
a) \(\dfrac{9}{4}-3y+y^2\)
\(=\left(\dfrac{3}{2}\right)^2-3y+y^2\)
\(=y^2-2\cdot\dfrac{3}{2}\cdot y+\left(\dfrac{3}{2}\right)^2\)
\(=\left(y-\dfrac{3}{2}\right)^2\)
b) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+6x^2y+12xy^2+\left(2y\right)^3\)
\(=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^2\)
a: 26⋅33=(22⋅3)3=12326⋅33=(22⋅3)3=123
b: 64⋅83=24⋅34⋅29=213⋅3464⋅83=24⋅34⋅29=213⋅34
c: 16⋅81=36216⋅81=362
d: 254⋅28=1004
\(125^3:5^2\)
\(=\left(5^3\right)^3:5^2\)
\(=5^9:5^2\)
\(=5^7\)
a) \(\left(\frac{1}{16}\right)^{25}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2^4}\right)^{25}\div\left(\frac{1}{2}\right)^{30}=\left[\left(\frac{1}{2}\right)^4\right]^{25}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2}\right)^{4.25}\div\left(\frac{1}{2}\right)^{30}\)
\(=\left(\frac{1}{2}\right)^{100}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2}\right)^{100-30}=\left(\frac{1}{2}\right)^{70}\)
b) \(584^{100}\div292^{100}=\left(584-292\right)^{100}=292^{100}\)
c) \(125^4\cdot16^3=\left(5^3\right)^4\cdot\left(2^4\right)^3=5^{3\cdot4}\cdot2^{4\cdot3}=5^{12}\cdot2^{12}=\left(5+2\right)^{12}=7^{12}\)
\(\dfrac{9.3^2.1}{81.27}\)
\(=\dfrac{81.1}{81.27}\)
\(=\dfrac{3^4.1}{3^4.3^3}\)