K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(\frac{11.3^{22}.3^7-9^{15}}{2^2.3^{28}}=\frac{11.3^{29}}{2^2.3^{28}}-\frac{3^{30}}{2^2.3^{28}}=\frac{11.3}{4}-\frac{9}{4}=\frac{33-9}{4}=\frac{24}{4}=6\)

\(\frac{27^5.8^2-9^7.4^3}{2^6.9^6}=\frac{3^{15}.2^6}{2^6.3^{12}}-\frac{3^{14}.2^6}{2^6.3^{12}}=27-9=18\)

~ Học tốt ~

20 tháng 9 2016

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{2^{11}.3^5}=\frac{3}{2^4}=\)\(\frac{3}{16}\)

20 tháng 9 2016

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(3.2\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{3^5.2^5.2^6}=\frac{2^7.3^5.3}{3^5.2^{11}}=\frac{2^7.3}{2^7.2^4}=\frac{3}{2^4}=\frac{3}{16}\)

Bài này cx là BTVN của mk, mk làm giống vậy đấy

20 tháng 10 2017

2048/3081

3 tháng 1 2019

\(\frac{2048}{5135}\)

1 tháng 8 2019

a) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)

\(\frac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left(5^2\right)^3.\left(2^2\right)^5}\)

\(\frac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{5^6.2^{10}}\)

\(\frac{5^8.2^6-5^7.2^6+5^7.2^{10}}{5^6.2^{10}}\)

\(\frac{5^7.2^6.\left(5-1+2^4\right)}{5^6.2^{10}}\)

\(\frac{5.20}{2^4}=\frac{25}{4}\)

2 tháng 8 2019

\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\)

\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{2^2}{5}=\frac{4}{5}\)

19 tháng 9 2016

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(\Rightarrow A=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)

\(\Rightarrow A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)

\(\Rightarrow A=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-4\right)}{5^9.7^8\left(1+2^3\right)}\)

\(\Rightarrow A=\frac{2}{3.4}-\frac{5.\left(-3\right)}{9}\)

\(\Rightarrow A=\frac{1}{3}-\frac{-15}{9}\)

\(\Rightarrow A=\frac{1}{3}+\frac{5}{3}\)

\(\Rightarrow A=\frac{6}{3}=2\)

Vậy \(A=2\)

1 tháng 7 2015

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{2^{11}.3^5}=\frac{3}{2^4}=\frac{3}{16}\)

1 tháng 7 2015

\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3.3\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^3.3^3}{2^5.3^5.2^6}=\frac{3}{16}\)