Tìm x
\(\dfrac{x-1}{4}=\dfrac{-9}{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x\) : \(\dfrac{13}{3}\) = -2,5
\(x\) = -2,5 . \(\dfrac{13}{3}\)
\(x\) = \(\dfrac{65}{6}\)
b,\(\dfrac{3}{5}\)\(x\) = \(\dfrac{1}{10}-\)\(\dfrac{1}{4}\)
\(\dfrac{3}{5}x\) = \(\dfrac{-3}{20}\)
\(x\) = \(\dfrac{-3}{20}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{-1}{4}\)
c, \(\dfrac{25}{9}-\dfrac{12}{13}x=\dfrac{7}{9}\)
\(\dfrac{12}{13}x\)\(=\dfrac{25}{9}-\dfrac{7}{9}\)
\(\dfrac{12}{13}x=2\)
\(x=2:\dfrac{12}{13}\)
\(x=\dfrac{13}{6}\)
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
\(\Rightarrow-x^2=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-6\right\}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{9}+\dfrac{-9x}{9}=\dfrac{-3}{9}\)
\(\Rightarrow5-9x=-3\)
\(\Rightarrow-9x=-8\)
\(\Rightarrow x=\dfrac{8}{9}\)
Vậy: \(x=\dfrac{8}{9}\)
c) \(x:3\dfrac{1}{5}=1\dfrac{1}{2}\)
\(\Rightarrow x:\dfrac{16}{5}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}.\dfrac{16}{5}\)
\(\Rightarrow x=\dfrac{24}{5}\)
Vậy: \(x=\dfrac{24}{5}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
a) Ta có: \(\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-1}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-5}{25}=\dfrac{2}{25}\)
hay \(x=\dfrac{6}{25}\)
Vậy: \(x=\dfrac{6}{25}\)
b) Ta có: \(\dfrac{4}{9}+\dfrac{x}{5}=\dfrac{5}{11}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{5}{11}-\dfrac{4}{9}=\dfrac{45}{99}-\dfrac{44}{99}=\dfrac{1}{99}\)
hay \(x=\dfrac{5}{99}\)
Vậy: \(x=\dfrac{5}{99}\)
a: \(Q=-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1\)
\(A=x^2y-3x+1-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{2}x^2y-\dfrac{7}{12}xy^2-3x\)
b: \(P=\dfrac{3}{4}xy^2+\dfrac{4}{9}x-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{6}xy^2+\dfrac{16}{9}x-\dfrac{1}{2}x^2y-1\)
\(a,\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{1}{3}\\2x+1=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-\dfrac{2}{3}\\2x=-\dfrac{4}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ b,\Rightarrow x+\dfrac{1}{2}=\dfrac{1}{16}\Rightarrow x=-\dfrac{7}{16}\\ c,\Rightarrow5\left(x+1\right)=4\left(2x-1\right)\left(x\ne\dfrac{1}{2}\right)\\ \Rightarrow5x+5=8x-4\\ \Rightarrow3x=9\Rightarrow x=3\left(tm\right)\)
Bài 4:
a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)
\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)
\(1,25-x=\dfrac{11}{12}\)
\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)
\(x-\dfrac{7}{6}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)
\(x=\dfrac{27}{12}=\dfrac{9}{4}\)
c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)
\(4-\left(2x+1\right)=\dfrac{8}{3}\)
\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)
\(2x+1=\dfrac{20}{3}\)
\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)
\(2x=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)
Bài 15:
a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)
\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)
\(=>x=\left(\dfrac{-2}{3}\right)^8\)
b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)
\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)
\(=>x=\left(\dfrac{4}{9}\right)^9\)
c) \(\left(x+4\right)^3=-125\)
\(\left(x+4\right)^3=\left(-5\right)^3\)
\(=>x+4=-5\)
\(x=-5-4\)
\(=>x=-9\)
d) \(\left(10-5x\right)^3=64\)
\(\left(10-5x\right)^3=4^3\)
\(=>10-5x=4\)
\(5x=10-4\)
\(5x=6\)
\(=>x=\dfrac{6}{5}\)
e) \(\left(4x+5\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)
Bài 16:
a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)
\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)
\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)
b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)
\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)
\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)
c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)
\(=\dfrac{7}{4}.\dfrac{-12}{5}\)
\(=\dfrac{-21}{5}\)
\(#Wendy.Dang\)
a.
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(\Rightarrow x^2=4.9\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=6\end{matrix}\right.\)
b.
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=3^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(\dfrac{x}{9}=\dfrac{4}{x}\)
\(x^2=4.9\)
\(x^2=36\)
\(x^2=6^2\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(---------\)
\(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\left(x+1\right)^2=3.3=3^2\)
\(\Rightarrow\left(1\right):x+1=3\)
\(x=3-1\Rightarrow x=2.\)
\(\Rightarrow\left(2\right):x+1=-3\)
\(x=-3-1\Rightarrow x=-4\)
Từ \(\left(1\right)\) và \(\left(2\right)\), ta suy ra:
\(\Rightarrow x\in\left\{{}\begin{matrix}2\\-4\end{matrix}\right.\)
a, \(\left(\dfrac{7}{2}-2x\right).\dfrac{10}{3}=\dfrac{22}{3}\Leftrightarrow\dfrac{7}{2}-2x=\dfrac{22}{10}=\dfrac{11}{5}\)
\(\Leftrightarrow2x=\dfrac{13}{10}\Leftrightarrow x=\dfrac{13}{20}\)
b, \(\dfrac{4x}{9}=\dfrac{9}{8}-\dfrac{125}{1000}=1\Leftrightarrow x=\dfrac{9}{4}\)
c, \(-\dfrac{x}{21}=\dfrac{60}{21}\Rightarrow x=-60\)
a: x=1-2/9=7/9
b: x=6/7-2/3=18/21-14/21=4/21
c: x=1/4+1/2=3/4
ĐKXĐ: \(x\ne1\)
\(\dfrac{x-1}{4}=\dfrac{-9}{1-x}\)
=>\(\dfrac{x-1}{4}=\dfrac{9}{x-1}\)
=>\(\left(x-1\right)^2=4\cdot9=36\)
=>\(\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)