\(a,Cho\)\(\left(a+4b\right)⋮14.\)\(Chứng\)\(tỏ\)\(\left(a+25b\right)⋮7\)
\(b,Cho\)\(\left(a+18b\right)⋮20.\)\(Chứng\)\(tỏ\)\(\left(a+26b\right)⋮4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn viết rõ yêu cầu của đề ra nhé , mình làm bài 2.
\(a.\left(a-b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\left(đpcm\right)\)
\(b.a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Leftrightarrow a=b=c\left(đpcm\right)\)
\(c.\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-2ab-2bc-2ac\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a=b=c\) ( Kết quả câu b)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{a^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3}{4}a$
$\frac{b^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq \frac{3}{4}b$
$\frac{c^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3}{4}c$
Cộng 3 BĐT trên và thu gọn:
$\Rightarrow \frac{a^3}{(a+b)(a+c)}+\frac{b^3}{(b+a)(b+c)}+\frac{c^3}{(c+a)(c+b)}\geq \frac{1}{4}(a+b+c)=\frac{1}{4}.3=\frac{3}{4}$
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
1.
(a - b) - (b + c) + (c - a) - (a - b - c)
= a - b - b - c + c - a - a + b + c
= (a - a) + (b - b) + (c - c) - (a + b - c)
=0 + 0 + 0 - (a + b - c)
= - (a + b - c) (đpcm)
2. chju
P = a . ( b - a ) - b . ( a - c ) - bc
P = ab - a2 - ba + bc - bc
P = ab - a2 - ba
P = a . ( b - a - b )
P = a . ( - a ) mà a khác 0 => P có giá trị âm
Vậy biểu thức P luôn âm với a khác 0
Có A = 1 - (3/4) + (3/4)2- (3/4)2+ ... - (3/4)2009 + (3/4)2010
=>A.(3/4) = (3/4) - (3/4)2 + (3/4)3 - (3/4)4 +... - (3/4)2010 + (3/4)2011
=>A + A.(3/4) = 1 + (3/4)2011
=> 7A/4 = 1 + (3/4)2011
=> 7A = 4 + 4.(3/4)2011 không là số nguyên
=> A không nguyên
vậy A ko phải là số nguyên
\(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
\(\Rightarrow\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{2010}-\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{20010}-\left(\frac{3}{4}\right)^{2011}\)
\(+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
\(\Rightarrow\frac{7}{4}A=1-\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow A=\frac{4}{7}-\frac{4}{7}.\left(\frac{3}{4}\right)^{2011}\)
\(\Rightarrow A=\frac{4}{7}-\frac{3^{2011}}{7.4^{2010}}\)
Vậy A không là số tự nhiên
xét |a|>=0 |b|>=0
xét |a|>=0 |b|=<0
xét |a|=<0;|b|=<0
xét |a|=<0;|b|>=0
a) Ta có a, b là các số tự nhiên.
Ta thấy \(\left(a+4b\right)⋮14\Rightarrow\left(a+4b\right)⋮7\)
Lại có \(21b⋮7\)
Vậy nên \(a+4b+21b⋮7\Rightarrow\left(a+25b\right)⋮7\)
b)
Ta thấy \(\left(a+18b\right)⋮20\Rightarrow\left(a+18b\right)⋮4\)
Lại có \(8b⋮4\)
Vậy nên \(a+18b+8b⋮4\Rightarrow\left(a+26b\right)⋮4\)