Cho đoạn thẳng AB không đổi và 2 điểm C:D lần luwowyj thuộc đoạn thẳng đó( C nằm giữa A và D ). Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC; CND;NBK. Gọi G là trọng tâm tam giác MNK đến đoạn thẳng AB là không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên đoạn AC lấy H sao cho H là trung điểm của đoạn.
Lại có: E là trung điểm của AD nên EH là đường trung bình của tam giác ACD
Do đó CD = 2EH (1)
Gọi I là trung điểm của AM, K là trung điểm của AB
Ta có: EK là đường trung bình của tam giác ADB nên EK //DB
Suy ra góc EKI = 600. Hoàn toàn tương tự: góc FKB = 600
Do đó góc EKF = 600
Tương tự ta có góc HIE = 600
Xét hai tam giác HIE và FKE có:
HI = FK (cùng bằng 1 nửa AC)
góc HIE = góc EKE (=600)
EI = EK (cùng bằng 1 nửa DM)
Suy ra tam giác HIE = tam giác FKE (c.g.c)
Suy ra EF = EH (2)
Từ (1) và (2) suy ra EF = 1/2CD (đpcm)
Cách 1: *cách của Assassin_07*
Cách 2: Ta tạo ra đoạn thẳng bằng nửa CD, đó là PQ (P là trung điểm MC, Q là trung điểm MD). Để chứng minh EF=PQ, ta lấy K là trung điểm AB rồi chứng minh ∆EKF=∆QMP (c.g.c)
Tương tự 2B. Gợi ý: Kéo dài AC và BD cắt nhau tại E. Xét các trường hợp khi M º A Þ C º A, D º E và khi M º B Þ D º B, C º E.
Từ đó chứng minh được I thuộc đường trung bình của DABE.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
B2) Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.
B3) Do ∆ABC vuông cân tại A, có trung tuyên AM => AM cũng là phân giác, trung tuyến, đường cao,...
=> BM = CM ;góc BAM = góc CAM = 45º => AM = MC(∆AMC vuông cân tại M)
Xét ∆HAB và ∆KCA có:
+ góc BHA = góc CKA = 90º
+ AB = AC
+ góc BAH = góc ACK (= 90º - góc CAK - bạn tự chứng minh)
=> ∆HAB = ∆KCA(g.c.g) => AH = CK
Ta có: góc HAB = góc ACK => góc HAB + góc BAM = góc ACK + góc MCA (do góc MAB = góc MCA = 45º) => góc MAH = góc MCK
Xét ∆HAM và ∆KCM có
+ AH = CK
+ góc MAH = góc MCK
+ AM = MC
=> ∆HAM = ∆KCM (c.g.c) => HM = MK(1) và góc HMA = góc CMK
=> góc HMA + góc AMK = góc CMK + góc AMK
=> góc HMK = góc AMC = 90º (2)
từ (1) và (2) => ∆HMK vuông cân tại M
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
nâng cao phát triẻn toán 8 tâọ 1 bài 56,