K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4

Tham khảo:

a. Để chứng minh tứ giác \(ADHE\) nội tiếp, ta cần chứng minh rằng góc \(DHE\) bằng \(180^\circ\) - tức là góc \(DHE\) là góc ngoài của tam giác \(ABC\) tại đỉnh \(A\), vì khi đó tứ giác \(ADHE\) sẽ nội tiếp. 

Xét góc \(DHE\), ta thấy rằng:
\[ \angle DHE = \angle B + \angle C \]
Do \(BD\) và \(CE\) là đường cao của tam giác \(ABC\), nên:
\[ \angle B = \angle EHB \]
\[ \angle C = \angle HDC \]
Vậy:
\[ \angle DHE = \angle EHB + \angle HDC \]
\[ \angle DHE = (180^\circ - \angle B) + (180^\circ - \angle C) \]
\[ \angle DHE = 360^\circ - (\angle B + \angle C) \]
Nhưng ta biết rằng tổng các góc của tam giác \(ABC\) là \(180^\circ\), nên:
\[ \angle DHE = 360^\circ - 180^\circ = 180^\circ \]
Điều này chứng minh tứ giác \(ADHE\) là tứ giác nội tiếp.

b. Để chứng minh \( \angle DEK = \angle DMC \), ta sử dụng tính chất của tứ giác \(ADHE\) nội tiếp đã chứng minh ở câu (a). 

Do tứ giác \(ADHE\) là tứ giác nội tiếp, nên:
\[ \angle DHE = 180^\circ - \angle DAE \]
Nhưng ta cũng biết rằng:
\[ \angle DAE = \angle DMC \]
Vậy:
\[ \angle DHE = 180^\circ - \angle DMC \]
\[ \angle DHE + \angle DMC = 180^\circ \]

Giả sử \(HN\) vuông góc với \(AB\) tại \(N\), với \(M\) là trung điểm của \(BC\), thì \(HM\) cũng là đường trung bình của tam giác \(ABC\), nên:
\[ \angle HMC = \angle HNC = 90^\circ \]

Vậy, chúng ta có:
\[ \angle DHE + \angle DMC = 180^\circ = \angle HMC + \angle HNC \]

Vậy, điều phải chứng minh là góc \(DEK\) bằng góc \(DMC\).

a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp

b: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔBAC

=>AH\(\perp\)BC tại K

Xét tứ giác BEHK có \(\widehat{BEH}+\widehat{BKH}=90^0+90^0=180^0\)

nên BEHK là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

Ta có: \(\widehat{DEH}=\widehat{DAH}\)(AEHD nội tiếp)

\(\widehat{KEH}=\widehat{KBH}\)(BEHK nội tiếp)

mà \(\widehat{DAH}=\widehat{KBH}\left(=90^0-\widehat{DCB}\right)\)

nên \(\widehat{DEH}=\widehat{KEH}\)

=>EC là phân giác của góc DEK

=>\(\widehat{DEK}=2\cdot\widehat{HED}\)

mà \(\widehat{HED}=\widehat{HBC}\)(BEDC nội tiếp)

nên \(\widehat{DEK}=\widehat{HBC}\)(1)

ΔDBC vuông tại D

mà DM là đường trung tuyến

nên DM=MB=MC

Xét ΔMDB có \(\widehat{DMC}\) là góc ngoài tại D

nên \(\widehat{DMC}=\widehat{MBD}+\widehat{MDB}=2\cdot\widehat{MBD}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DEK}=\widehat{DMC}\)

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0
18 tháng 3 2021

J đây b

19 tháng 12 2021

Chưa viết hết đầu bài kìa

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

 đề đây nha mn :((   cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E

23 tháng 8

=> Đề của bạn chưa đầy đủ và rõ ràng, bạn xem lại nhé!

14 tháng 3 2023

Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME 
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP 
c cmr CE = CD tam giác AMD là tam giác j vì s 
D  CMR AM NHỎ HƠN AB +AC /2
​CHỈ LM MỖI Ý D THUI NHA NHANH NHA

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xet ΔMAD có

MH vừa là đường cao,vừa là trung tuyến

=>ΔMAD cân tại M

d: AM<1/2(AB+AC)

=>AE<AB+AC

=>AE<BE+AB(luôn đúng)

23 tháng 4 2022

thiếu