Tìm số nguyên tố ab (a>b>0), sao cho ab-ba là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤ 9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Vì a,b là chữ số tự nhiên mà a,b là số nguyên tố nên a,b\(\in\){2;3;5;7}
Thay từng trường hợp vào cho đến khi đến chỗ này:
Với a=3;b=2. Ta có: 32-23=9=32 (là số chính phương)
Vậy số nguyên tố a=3; b=2
ab-ba=10a+b-10b-a=9(a-b)
=> 9(a-b) là số chính phương thì a-b=9 hoặc a-b =1
Vì \(a-b\le8\) nên a-b=1
=> a=2; b=1
=> ab=21
Ta có: ab-ba=n2
10a+b-10b-a=n2
(10a-a)-(10b-b)=n2
9a-9b=n2
9(a-b)=n2
mà n2 có thể =32=9
=>a-b =n2, =>a-b thuộc{12;22;32) mà ab nguyên tố
=>a-b=1 =>a=4; b=3
=>a-b=4 =>a=7; b=3
=>a-b=9 mà a;b có 1 chữ số =>loại
Vậy ab thuộc{43;73}
ab - ba =a.10+b-(bx10+a)=9(a-b)=32ab
Vì a-b là số chính phương mà a>b>0
=>a-b=1 hoặc a-b=4
*a=4,b=3 hoặc a=7,b=3
Vậy ab=43 hoặc ab=73
Bài này mình làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Bài này mình cung làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương
ab-ba=a.10+b-(b.10+a)=9(a-b)=32(a-b)
a-b là số chính phương và a>b>0=>a-b=1 hoặc a-b=4
a=4,b=3 hoặc a=7,b=3
ab=43 hoặc ab=73
ab-ba=a*10+b-(b*10+a)=9(a-b)=32(a-b)
a-b là số chình phương và a>b>0 => a-b=1 hoặc a-b=4
a=4,b=3 hoặc a=7,b=3
ab=43 hoặc ab=73
Do \(\overline{ab}-\overline{ba}\) là số chính phương nên \(\overline{ab}-\overline{ba}=n^2\left(n\in Z\right)\)
\(\Leftrightarrow\left(10a+b\right)-\left(10b+a\right)=n^2\Leftrightarrow9\left(a-b\right)=n^2\)
Do \(n^2;9\) là số chính phương nên \(a-b\) là số chính phương
Mà a;b là có số có 1 chứ số nên \(a-b\in\left\{1;4;9\right\}\)
Xét \(a-b=1\) thì \(\overline{ab}=\left\{98;87;76;65;54;43;32;21;10\right\}\) mà \(\overline{ab}\) là số NT nên \(\overline{ab}=43\)
Xét \(a-b=4\) thì \(\overline{ab}=\left\{95;84;73;62;51;40\right\}\) mà \(\overline{ab}\) là số nt nên \(\overline{ab}=73\)
Xét \(a-b=9\Rightarrow\overline{ab}=90\) loại
Vậy \(\overline{ab}=43;73\)
11,43,73