so sánh D với 3/4
D = 1/4 + 1/9 + 1/16 + 1/25 + ... + 1/100 + 1/121
làm giúp m câu này nha ! ghi cả cách làm ra nữa nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}+\frac{1}{121}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{11^2}\)
Ta có: \(\frac{1}{2^2}>\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}>\frac{1}{4}-\frac{1}{5}\)
................................
\(\frac{1}{10^2}>\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}>\frac{1}{11}-\frac{1}{12}\)
Cộng theo vế ta được:
\(A>\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
Vậy \(A>\frac{5}{12}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}<\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=2.\frac{1}{2}+2.\frac{1}{4}+3.\frac{1}{6}=2\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
(100/7+100/9+100/11):(1/7+1/9+1/11)
=100.(1/7+1/9+1/11):(1/7+1/9+1/11)
=(100:1)(1/7+1/9+1/11)
=100.239/693
=23900/693
\(\left(\frac{100}{7}+\frac{100}{9}+\frac{100}{11}\right)\div\left(\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)\)
= \(100\times\left(\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)\div\left(\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)\)
= \(100\)
Lời giải:
$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
$\Rightarrow 2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
$\Rightarrow A=2A-A=1-\frac{1}{32}< 1-\frac{1}{2004}$
Hay $A< \frac{2003}{2004}$
Hay $A< B$
D=1/22+1/32+1/42+1/52+....+1/102+1/112
1/22<1/1x2 ; 1/32<1/2x3;...
=)D<1/1x2+1/2x3+1/3x4+1/4x5+...+1/9x10+1/10x11
D<1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
D<1-1/11
D<10/11