Chứng minh rằng:
A= 1002 + 2002 + 3002 +...+9002 +10002
Chia hết cho 385
Mình đg cần gấp, ai làm được mình sẽ tick cho!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 16a + 17 b chia hết cho 11
Mà ( 16a + 17b ) + ( 17a +16b ) = 33a + 33b = 11(3a + 3b ) chia hết cho 11
=> 17a + 16 b chia hết cho 11
Ta có:
\(3^{2002}-2^{2002}+3^{2000}-2^{2000}\)
\(=3^{2002}+3^{2000}-\left(2^{2002}+2^{2000}\right)\)
\(=3^{2000}\left(3^2+1\right)-2^{2000}\left(2^2+1\right)\)
\(=3^{2000}.10-2^{1999}.10=10\left(3^{2000}-2^{1999}\right)⋮10\)
Vậy.....
a+10b chia hết cho 17
=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)
cố định đề bài 2a+3b chia hết cho 17
nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17
hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17
vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra
ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu
chúc học tốt
ta thấy 1978 ko chia hết cho 11
78 ko chia hết cho 11 suy ra a chia hết cho 11
2012 ko chia het cho 11
10 ko chia het cho 11
suy ra chắc chắn b chia hết cho 11 ( ĐPCM)
k nha
\(1978a+2012b-78a-10b=1900a+2002\)
ma 2002b chia het cho 11
=>1900a chia het cho 11 nhung 1900 khong chia het cho 11
=>a chia het cho 11 (1)
ta co 78a+10b chia het cho 11 ma 78a chia het cho 11
=>10b chia het cho 11 ma 10 khong chia het cho 11
=>b chia het cho 11 (2)
tu (1) va (2) =>a+b chia het cho 11
1)a) 7^6 +7^5-7^4 = 7^4.7^2+7^4.7-7^4.1 = 7^4.(7^2+7-1) = 7^4.(49+7-1) = 7^4.55
Vì 55 chia hết cho 55 nên 7^4.55 chia hết cho 55
Do đó 7^6 + 7^5 - 7^4 chia hết cho 55 (đpcm)
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
A= 1002 + 2002+...+10002
= (1.100)2+(2.100)2+....+ (10.100)2
= 1002 .( 12+22+...+102)
= 1002 .385
=> 1002.385 \(⋮\) 385
\(\Rightarrow\) A\(⋮\) 385
Cảm mơn bạn Đinh Phương Khánh nha