\(cho\left|a\right|;\left|b\right|\ge2.cmr:\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề như thế thì đương nhiên phải có điều kiện đó chứ em, đề đúng rồi anh xin xóa câu trl
1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.
\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
⇔\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
⇔\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)
⇔\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)
⇔\(x^2-ax-bx+ab=0\)
⇔\(x\left(x-a\right)-b\left(x-a\right)\)
⇔\(\left(x-a\right)\left(x-b\right)=0\)
⇔\(x=a\) hay \(x=b\)
-Vậy \(S=\left\{a;b\right\}\)
Lời giải chưa hay đâu bạn Trần Thị Kim Ngân.
Để ý một chút sẽ thấy \(A\) là một đa thức bậc 2 theo biến \(x\), nên ta gọi là \(A\left(x\right)\) cho đúng kiểu đa thức.
\(A\left(a\right)=1\) (nghĩa là thay \(x\) bằng \(a\) được kết quả là \(1\)).
Tương tự \(A\left(b\right)=A\left(c\right)=1\).
-----
Hừm, từ chỗ này về sau không biết bạn hiểu không.
Gọi \(f\left(x\right)=A\left(x\right)-1\) vẫn là một đa thức bậc 2, và \(f\left(a\right)=f\left(b\right)=f\left(c\right)=0\) tức là \(f\left(x\right)\) có 3 nghiệm \(x=1,x=b,x=c\).
Tuy nhiên, một đa thức bậc 2 thì chỉ có tối đa 2 nghiệm thôi, nếu nhiều hơn thì đa thức đó luôn bằng 0, nghĩa là \(f\left(x\right)=0\) với mọi \(x\).
Vậy \(A=1\).
Ta có:
\(A=\frac{\left(x-b\right)\left(x-c\right)\left(c-b\right)+\left(x-c\right)\left(x-a\right)\left(a-c\right)+\left(x-a\right)\left(x-b\right)\left(b-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=\frac{\left(x-b\right)\left(x-c\right)\left(c-b\right)+\left(x-c\right)\left(x-a\right)\left(a-c\right)-\left(x-a\right)\left(x-b\right)\left[\left(c-b\right)+\left(a-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=\frac{\left(x-b\right)\left(c-b\right)\left(x-c-x+a\right)+\left(x-a\right)\left(a-c\right)\left(x-c-x-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=\frac{\left(x-b\right)\left(c-b\right)\left(a-c\right)+\left(x-a\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-c\right)\left(c-b\right)\left(x-b-x+a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
Ta chứng minh bổ đề: Với \(|x|\ge2\)thì \(2x^2-4x\ge0\)
Với \(x\le-2\)thì nó đúng
Xét \(x\ge2\)thì ta có:
\(2x\left(x-2\right)\ge0\)(đúng)
Quay lại bài toán:
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)
\(\Leftrightarrow4a^2b^2+4a^2+4b^2-4a^2b-4ab^2-4a-4b-16\ge0\)
\(\Rightarrow VT=\left(a^2b^2-4a^2b+4a^2\right)+\left(a^2b^2-4b^2a+4b^2\right)+\left(a^2b^2-16\right)+\left(\frac{a^2b^2}{2}-4a\right)+\left(\frac{a^2b^2}{2}-4b\right)\)
\(\ge\left(ab-2a\right)^2+\left(ab-2b\right)^2+\left(a^2b^2-16\right)+\left(2a^2-4a\right)+\left(2b^2-4b\right)\ge0\)
Vậy ta có ĐPCM
ai tra loi giup voi