Cho tam giác ABC , BC =40 tia phân giác AD dài 45 đường cao AH =36 Tính BD , BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
BC=căn 3^2+4^2=5cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4
=>BD/3=CD/4=5/7
=>BD=15/7cm; CD=20/7cm
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xet ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
Xét tam giác vuông ABC có:
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC=√6^2+8^2=10cm
Xét tam giác ABC có CD phân giác:
AD/BD=AC/BC(t/chất đường phân giác )
<=>AD+BD/BD=AC+BC/BC
<=>6/BD=18/10
<=>BD=10.6/18≈3,3cm
Ta có : AD+BD=AB
=>AD=AB-BD=6-3,3=2,7
Trong tam giác vuông ABH:
\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=10.tan45^0=10\)
\(cosB=\dfrac{BH}{AB}\Rightarrow AB=\dfrac{BH}{cosB}=\dfrac{10}{cos45^0}=10\sqrt{2}\)
Do tam giác ABH vuông tại H \(\Rightarrow\widehat{BAH}=90^0-\widehat{B}=45^0\)
\(\Rightarrow\widehat{CAH}=\widehat{A}-\widehat{BAH}=75^0-45^0=30^0\)
Trong tam giác vuông ACH:
\(cos\widehat{CAH}=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{cos\widehat{CAH}}=\dfrac{10}{cos30^0}=\dfrac{20\sqrt{3}}{3}\)
AD là phân giác góc A \(\Rightarrow\widehat{CAD}=\dfrac{1}{2}\widehat{A}=\dfrac{75^0}{2}=37^030'\)
\(\Rightarrow\widehat{DAH}=\widehat{CAD}-\widehat{CAH}=37^030'-30^0=7^030'\)
Trong tam giác vuông ADH:
\(cos\widehat{DAH}=\dfrac{AH}{AD}\Rightarrow AD=\dfrac{AH}{cos\widehat{DAH}}=\dfrac{10}{cos\left(7^030'\right)}\approx10,1\)
+ Kẻ AE là là phân giác của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE \(\Rightarrow\)tam giác EAD vuông góc tại A
+ Áp dụng định lí Pi-ta-go trong tam giác vuông AHD có: \(DH=\sqrt{AD^2-AH^2}=\sqrt{45^2-36^2}=27cm\)
+ Áp dụng hệ thức lượng giác trong tam giác vuông EAD có: \(AD^2=DH.DE\Rightarrow DE=\frac{AH^2}{DH}=\frac{45^2}{27}=75cm\)
+ Áp dụng tính chất phân giác trong và ngoài tam giác có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{EB}{EC}\)
Đặt: \(BD=x0< x< 40\Rightarrow CD=40-x\), ta có:
\(\frac{x}{40-x}=\frac{75-x}{75+40-x}\)do \(EB=DE-BD;EC=DE+DC\)
\(\Rightarrow x.115-x=40-x.75-x\)
\(\Leftrightarrow115x-x^2=3000-115x+x^2\Leftrightarrow x^2-115x+1500=0\)
\(\Rightarrow x=100\)loại hoặc \(x=15\)thoả mãn
Vậy: \(BD=15cm\)hoặc \(BD=40-15=25cm\). Nếu ta đổi vị trí B và C cho nhau
P/s: Câu hỏi của thang Tran - Toán lớp 9 - Học toán với OnlineMath
thanks ban nha