CMR:
\(M=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) ko phải là số nguyên (a,b,c ϵN*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{2021-c}+\dfrac{b}{2021-a}+\dfrac{c}{2021-b}\\ =\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ =\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Vì \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\Rightarrow A.ko.phải.số.nguyên\)
Vì \(a;b;c\in N^{\text{*}}\)ta có :
\(\frac{a}{b+a}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M=\frac{a}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}>1\)(*)
Lại có \(M=\frac{a+b-b}{a+b}+\frac{b+c-c}{b+c}+\frac{c+a-a}{c+a}=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)
Chứng minh tương tự như \(\left(\text{*}\right)\) ta cũng có \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}>1\)
\(\Rightarrow M=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)< 3-1=2\)(**)
Từ (*) và (**) => 1< M < 2 hay M ko phải là số nguyên (đpcm)
ta lập biểu thưc a.ư.s.d.f.g.j.b.c..rn.g.
a/f: d=2+eiek.3.e.e.ư.ư.ứ.sxc
ta lại lập biểu thưc a.b.v.c.d.f.g.l.l.d..ê.
b=s-f=số biểu thưc nhận chéo d=dio=fhu-fhfg=gjg=gggrigh
m=a/b+a+b/b+c+c/c+a
fhhhj-ghh-gjghh=dhfu
jhjhj ta lập biểu thức rahgikjff
Lời giải:
Ta có:
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+d+c}\)
\(> \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Leftrightarrow M>\frac{a+b+c+d}{a+b+c+d}=1(1)\)
Mặt khác:
\(M=1-\frac{b+c}{a+b+c}+1-\frac{a+d}{a+b+d}+1-\frac{b+d}{b+c+d}+1-\frac{a+c}{a+d+c}\)
\(\Leftrightarrow M=4-\underbrace{\left(\frac{b+c}{a+b+c}+\frac{a+d}{a+b+d}+\frac{b+d}{b+c+d}+\frac{a+c}{a+d+c}\right)}_{N}\)
Có: \(N>\frac{b+c}{a+b+c+d}+\frac{a+d}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{a+c}{a+b+c+d}\)
\(\Leftrightarrow N>\frac{2(a+b+c+d)}{a+b+c+d}=2\)
\(\Rightarrow M=4-N< 4-2\Leftrightarrow M< 2(2)\)
Từ \((1);(2)\Rightarrow 1< M< 2\Rightarrow M\not\in \mathbb{N}\)
Câu hỏi của Nguyễn Đức Cảnh - Toán lớp 7 - Học toán với OnlineMath
Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((
Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)
\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)
Vì a, b, c là các số nguyên
=> a+b+c là các số nguyên
=> Đpcm.
Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv
ĐKXĐ: \(a,b,c\ne0\)
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)
\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)
\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)
\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)
\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Mà \(a+b+c=2013\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)
Lời giải:
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow \frac{a}{b-c}=-(\frac{b}{c-a}+\frac{c}{a-b})=-\frac{ba-b^2+c^2-ca}{(c-a)(a-b)}\)
\(\Rightarrow \frac{a}{(b-c)^2}=-\frac{ba-b^2+c^2-ca}{(a-b)(b-c)(c-a)}\)
Tương tự:
\(\frac{b}{(c-a)^2}=-\frac{a^2-ab+bc-c^2}{(a-b)(b-c)(c-a)}\)
\(\frac{c}{(a-b)^2}=-\frac{ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}\)
Do đó:
\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=-\frac{bc-b^2+c^2-ac+a^2-ab+bc-c^2+ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}=-0=0\)
Nếu $a,b,c$ đều âm, khi đó \(\frac{a}{(b-c)^2}< 0; \frac{b}{(c-a)^2}< 0; \frac{c}{(a-b)^2}< 0\)
\(\Rightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}< 0\) (mâu thuẫn)
Nếu $a,b,c$ đều dương, khi đó \(\frac{a}{(b-c)^2}> 0; \frac{b}{(c-a)^2}> 0; \frac{c}{(a-b)^2}> 0\)
\(\Rightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}>0\) (mâu thuẫn)
Trường hợp có từ 2 số trở lên bằng $0$ thì hoàn toàn vô lý.
Do đó, trong 3 số $a,b,c$ phải có một số âm và một số dương.
\(VT=\left(\dfrac{b}{a}+\dfrac{b}{c}\right)+\left(\dfrac{c}{a}+\dfrac{c}{b}\right)+\left(\dfrac{a}{b}+\dfrac{a}{c}\right)\)
Ta có \(\left(\dfrac{b}{c}+\dfrac{b}{a}\right)\left(a+c\right)\ge\left(\sqrt{b}+\sqrt{b}\right)^2=4b\Leftrightarrow\dfrac{b}{c}+\dfrac{b}{a}\ge\dfrac{4b}{a+c}\)
CMTT \(\Leftrightarrow\left(\dfrac{c}{a}+\dfrac{c}{b}\right)\ge\dfrac{4c}{a+b};\dfrac{a}{b}+\dfrac{a}{c}\ge\dfrac{4a}{b+c}\)
Cộng VTV ta đc đpcm
Dấu \("="\Leftrightarrow a=b=c\)
Lời giải:
Với $a,b,c\in\mathbb{N}^*$ thì:
$\frac{a}{a+b}> \frac{a}{a+b+c}$
$\frac{b}{b+c}> \frac{b}{a+b+c}$
$\frac{c}{c+a}> \frac{c}{a+b+c}$
Cộng 3 BĐT trên lại:
$\Rightarrow M> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1(1)$
Mặt khác:
Xét hiệu:
$\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{a(a+b+c)-(a+b)(a+c)}{(a+b)(a+b+c)}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c\in\mathbb{N}^*$
$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$
Hoàn toàn tương tự thì:
$\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{c+a+b}$
Cộng lại theo vế thì:
$M< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=2(2)$
Từ $(1); (2)\Rightarrow 1< M< 2$
$\Rightarrow M$ không phải số nguyên.