Cho a;b;c là 3 cạnh của một tam giác. CMR \(\sqrt{r.r_c}\le\frac{c}{2}\)(r là bán kính đường tròn nội tiếp,\(r_c\)là bán kính đường tròn bàng tiếp trong\(\widehat{BAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Gọi A; B; CD,E,F làn lượt là tiếp điểm của đường tròn nội tiếp tam giác với BC; CA; AB
Khi đó: \(S=S_{BIC}+S_{CAI}+S_{BAI}=\frac{1}{2}\) \(BC.ID+CA.IE+AB.IF=p.r\)
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\) \(a+b+c=p=\frac{S}{r}\)
\(\RightarrowĐPCM\)
Không tính tổng quát, giả sử: \(h_a\le h_b\le h_c\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{h_b}\ge\frac{1}{h_c}\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{3}\)
\(\Rightarrow h_a\le3\)
Mặt khác: \(\frac{1}{h_a}< \frac{1}{r}=1\Rightarrow h_a>1\Rightarrow h_a\ge2\)
Vậy: \(h_a=2\)hoặc \(h_a=3\)
Nếu \(h_a=2\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{2}=\frac{1}{2}\)**
Ta có: \(a\ge b\ge c\)do \(h_a\le h_b\le h_c\)
Để a; b; clà 3 cạnh của một hình tam giác ta chỉ cần b + c > a do khi \(a\ge b\ge c\)theo ta sẽ có ngay a + c > b, a + b > c
\(\Leftrightarrow\frac{S}{h_b}+\frac{S}{h_c}>\frac{S}{h_a}\)
\(\Leftrightarrow\frac{1}{h_b}+\frac{1}{h_c}>\frac{1}{h_a}=\frac{1}{2}\)mâu thuẫn với **
Vậy, loại trường hợp này.
\(\Rightarrow h_a=3\Rightarrow h_b\ge h_c\ge3\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{3}=\frac{2}{3}\)
\(\frac{1}{h_b}\ge\frac{1}{h_c}\)
Suy ra: \(\frac{1}{h_b}\ge\frac{1}{3}\Rightarrow h_b\le3\)
Mà: \(h_b\ge\frac{1}{3}\Rightarrow h_b\le3\)
Vậy: \(h_b=3\Rightarrow h_c=3\)
\(\RightarrowĐPCM\)