K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4

a)Xét 2 tam giác ABH và ACH có:
AB=AC(do tam giác ABC cân tại A)
Góc ABC bằng góc ACB (do tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=>Tam giác ABH = tam giác ACH(cạnh - góc - cạnh)
b)Xét 2 tam giác HBA và HCM có:
Góc AHB bằng góc CHM(2 góc đối đỉnh)
HA=HM(giả thiết)
BH=HC(H là trung điểm BC)
=>Tam giác HBA bằng tam giác HCM(cạnh-góc-cạnh)
=>Góc ABH=góc MCH(2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong của đường thẳng AB và MC nên MC//AB
c)Xét tam giác ACM có:
CH là đường trung tuyến(H là trung điểm AM)
AF là đường trung tuyến(F là trung điểm MC)
Mà AF cắt CH tại G(do AF cắt BC tại G;H thuộc BC;G thuộc CH)
=>G là trọng tâm của tam giác ACM
Ta có:
ME cũng là 1 đường trung tuyến của tam giác ACM (E là trung điểm AC)
=>G thuộc ME ( tính chất 3 đường trung tuyến)
=>M,G,E thẳng hàng 

`#3107.101107`

`a)`

Vì `\triangle ABC` cân tại A

`\Rightarrow`\(\text{AB = AC; }\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

Xét `\triangle ABH` và `\triangle ACH`:

`\text{AB = AC}`

\(\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

\(\text{HB = HC (H là trung điểm BC)}\)

\(\Rightarrow\) `\triangle ABH = \triangle ACH (c - g - c)`

`b)`

Xét `\triangle AHB` và `\triangle MHC`:

\(\text{AH = HM}\)

\(\widehat{\text{AHB}}=\widehat{\text{MHC}}\left(\text{đối đỉnh}\right)\)

\(\text{HB = HC }\)

`\Rightarrow \triangle AHB = \triangle MHC (c-g-c)`

\(\Rightarrow\widehat{\text{ABH}}=\widehat{\text{MCH}}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí sole trong

\(\Rightarrow\text{ }\text{MC // AB (tính chất)}\)

`c)`

Vì E là trung điểm của AC; F là trung điểm của MC

\(\Rightarrow\text{EA = EC; FM = FC}\)

Ta có:

\(\left\{{}\begin{matrix}\text{EA = EC}\\\text{FM =FC}\\\text{HA = HM}\end{matrix}\right.\)

\(\Rightarrow\text{AF; ME và CH}\) lần lượt là các đường trung tuyến của `\triangle ACM`

Mà AF cắt HC tại G

\(\Rightarrow\) G là trọng tâm của `\triangle ACM`

\(\Rightarrow\) \(\text{G}\in\text{ME}\)

\(\Rightarrow\) `3` điểm M, G, E thẳng hàng (đpcm).

loading...

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

21 tháng 4 2021

N đâu ra?

21 tháng 4 2021

trong đề cương á bạn 

 

a Xét ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

=>ΔAHB=ΔAHC

b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có

HA=HM

HB=HC

=>ΔAHB=ΔMHC

=>góc HAB=góc HMC

=>AB//MC và AB=MC=AC

=>ΔMCA cân tại C

15 tháng 4 2023

câu c đâu bạn

 

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

18 tháng 12 2022

chịu

19 tháng 12 2022

loading...

a) xét ΔABH và ΔACH, ta có :

AB = AC (giả thiết)

\(\widehat{ABC}=\widehat{ACB}\)  (vì AB = AC => đó là tam giác cân, mà tam giác cân thì có 2 góc ở đáy bằng nhau)

AH là cạnh chung

ð ΔABH = ΔACH (c.c.c)

b) vì ΔABH = ΔACH, nên :

=> HB = HC (2 cạnh tương ứng)

c) hơi khó nha !

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

c: Xét tứ giác ABIC có

H là trung điểm chung của AI và BC

AI vuông góc bC

=>ABIC là hình thoi

=>IC//AB và IC=AB

=>CA=CI

=>góc CAH=góc CIH

10 tháng 8 2023

Tốt v a=))