K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: BH\(\perp\)AC(H là trực tâm của ΔABC)

CD\(\perp\)AC

Do đó: BH//CD
Ta có: CH\(\perp\)AB(H là trực tâm của ΔABC)

BD\(\perp\)AB

Do đó: CH//BD

a: Xét tứ giác BHCD có

BH//CD

CH//BD

DO đó: BHCD là hình bình hành

Câu b và c sai đề rồi bạn

31 tháng 8 2017

giúp mình


 

a: Xét tứ giác BHCD có

BH//CD

CH//BD

DO đó: BHCD là hình bình hành

Câu b và c sai đề rồi bạn

31 tháng 10 2016

1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.

2) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng