K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

=>\(B=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 2-\dfrac{1}{50}\)

=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{50}\right)=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\)

\(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2}.\dfrac{1}{50}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]\)

Ta có:

\(\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2.2}< \dfrac{1}{2.1}=\dfrac{2-1}{2.1}=\dfrac{2}{2.1}-\dfrac{1}{2.1}=1-\dfrac{1}{2}\)

\(\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{3.2}=\dfrac{3-2}{3.2}=\dfrac{3}{3.2}-\dfrac{2}{3.2}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\left(\dfrac{1}{50}\right)^2=\dfrac{1}{50.50}< \dfrac{1}{50.49}=\dfrac{50-49}{50.49}=\dfrac{50}{50.49}-\dfrac{49}{50.49}=\dfrac{1}{49}-\dfrac{1}{50}\)

Khi đó

\(1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]< \dfrac{1}{4}.2=\dfrac{1}{2}\)

Vậy \(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2< \dfrac{1}{2}\left(đpcm\right)\)

Tick cho mk nha :>>

A=1/4(1/1+1/2^2+...+1/50^2)

=>A=1/4+1/4*(1/2^2+...+1/50^2)

=>A<1/4+1/4*(1-1/2+1/2-1/3+...+1/49-1/50)

=>A<1/4+1/4*49/50=99/200<1/2

12 tháng 3 2019

C/m nó nhỏ hơn 3/4 hả bạn ?

Có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                      \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                        \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\)

8 tháng 7 2021

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)(ĐPCM)

8 tháng 7 2021
Mn ơi giúp mình đi mà
3 tháng 7 2019

1)Tính:

a)\(4^2\cdot2=\left(2^2\right)^2\cdot2=2^4\cdot2=2^5=32\)

b)\(36^2:6^2=\left(36:6\right)^2=6^2=48\)

c)\(\left(\frac{2}{5}\right)^{10}:\left(\frac{4}{25}\right)^2=\left(\frac{2}{5}\right)^{10}\cdot\left(\frac{25}{4}\right)^2=\)\(\left(1\right)^{10}\cdot\left(\frac{5}{2}\right)^2=1\cdot\frac{5^2}{2^2}=1\cdot\frac{25}{4}=\frac{25}{4}\)

3 tháng 7 2019

a

\(4^2.2=16.2=32\)

b\(36^2:6^2=36.36:6.6=36.36:36=36\)

c

11 tháng 2 2016

2x(3y-2)+(3y-2) = (2x+1)(3y-2) = -55.Lập bảng :

2x+1-55-11-5-1151155
3y-2151155-55-11-5-1
2x-56-12-6-2041054
3y371357-53-9-31
x-28-6-3-102527
y1  19 -3-1 

Vậy (x;y) = (-28;1);(-1;19);(2;-3);(5;-1)

12 tháng 2 2016

làm giúp mình câu b) nhé ! cảm ơn bạn nhiều !!!

12 tháng 12 2019

a) Ta có : A=2+22+23+...+210

                  =(2+22)+(23+24)+...+(29+210)

                 =2(1+2)+23(1+2)+...+29(1+2)

                =2.3+23.3+...+29.3

Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3

hay A\(⋮\)3

Vậy A\(⋮\)3.

12 tháng 12 2019

b) Ta có : A=22+24+26+...+220

                  =(22+24)+(26+27)+...+(218+220)

                  =22(1+22)+26(1+22)+...+218(1+22)

                 =22.5+26.5+...+218.5

Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5

hay A\(⋮\)5

Vậy A\(⋮\)5.

30 tháng 8 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+................+\dfrac{1}{2008^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...................

\(\dfrac{1}{2008^2}< \dfrac{1`}{2007.2008}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{2007.2008}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2008}< 1\)

\(\Leftrightarrow A< 1\rightarrowđpcm\)

9 tháng 11 2023

   D = 40 + 41 + 42 + 43 + 44 + ... + 4200

4.D = 4   + 42 + 43 + 44 + 45 +... + 4201

4D - D = (4 + 42 + 43 + 44 + 45 + ... + 4201) - (40 + 41 + 42 +...+4200)

 3D      = 4 + 42 + 44 + 44 + 45 + ... + 4201 - 40 - 41 - 42 - ... - 4200

3D      =  (4 - 41) + (42 - 42) + .... + (4200 - 4200) + 4201 - 40

  3D    = 4201 - 40

   3D + 1 = 4201 - 1 + 1

   3D + 1  = 4201

Theo bài ra ta có: 4201 = 4n+1

                              n + 1  = 201

                              n =  201 - 1

                              n = 200

                             

   

9 tháng 11 2023

\(D=4^0+4^1+4^2+4^3+4^4+...+4^{200}\\4D=4\cdot(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\4D=4^1+4^2+4^3+4^4+4^5+...+4^{201}\\4D-D=(4^1+4^2+4^3+4^4+4^5+...+4^{201})-(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\3D=4^{101}-4^0\\3D=4^{101}-1\\\Rightarrow 3D+1=4^{101}\)

Mặt khác: \(3D+1=4^{n+1}\)

\(\Rightarrow 4^{n+1}=4^{101}\\\Rightarrow n+1=101\\\Rightarrow n=101-1=100(tmdk)\)