K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó ΔHFB~ΔHEC

=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\)

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(AE\cdot AC=AF\cdot AB\)

4 tháng 5 2021

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{AEB}=\widehat{AFC}\)

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)

b) Vì \(\Delta ABE\sim\Delta ACF\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)

Theo bài ra, ta có: AB // d

\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\widehat{ACF}=\widehat{BED}\)

Xét \(\Delta HED\) và \(\Delta HEC\) có:

\(\widehat{BED}=\widehat{ACF}\)

\(\widehat{EHC}\) chung

\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)

\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)

\(\Leftrightarrow HE^2=HD.HC\)

4 tháng 5 2021

có thể vẽ hình cho em được ko chị

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC

 

đầu bài thiếu kìa bạn

a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có

góc EHA=góc IHB

=>ΔHEA đồng dạng với ΔHIB

b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có

góc MIB=góc ICH

=>ΔMIB đồng dạng với ΔICH

=>IB/CH=IM/IC

=>IB*IC=CH*IM

7 tháng 5 2022

a/

Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp

b/ Xét tg MEB và tg MCF có

\(\widehat{EMC}\) chung

\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)

=> tg MEB đồng dạng với tg MCF (g.g.g)

\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)