K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

nhớ giải thích nữa nha ạ

 

Chọn D

20 tháng 8 2017

Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là trung điểm...
Đọc tiếp

Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là: A. 20cm B. 5cm C. 10cm D. 15cm Câu 4: Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Độ dài đường trung tuyến AM là: A. 12cm B. 10cm C. 8cm D. 6cm Câu 5: Trong một tam giác, điểm cách đều ba cạnh là: A. Giao điểm ba đường trung tuyến B. Giao điểm của ba đường trung trực C. Giao điểm ba đường phân giác D. Giao điểm ba đường cao Câu 6: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là: A. Tam giác vuông B. Tam nhọn C. Tam giác cân D. Tam giác tù Câu 7: Cho tam giác ABC, M là trung điểm của BC, G là trọng tâm của tam giác ABC và AM=18cm. Độ dài đoạn AG là: A. 12cm B. 6cm C. 9cm D. 10cm Câu 8: Cho tam giác ABC cân tại A, các đường trung tuyến BC và CE cắt nhau tại G. Chọn khẳng định đúng trong các khẳng định sau: A. AG là tia phân giác của góc A của tam giác ABC B. AG là đường trung trực của BC của tam giác ABC C. AG là đường cao của tam giác ABC D. Cả ba khẳng định đều đúng Câu 9: Cho tam giác ABC cân tại A, BC = 10cm. Độ dài đường trung tuyến AM bằng 12cm. Khi đó độ dài AB là A. 12cm B. 13cm C. 11cm D. 10cm Câu 10: Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm A. Nằm bên trong tam giác B. Nằm bên ngoài tam giác C. Là trung điểm của cạnh huyền BC D. Trùng với điểm A Câu 11: Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là: A. 6cm B. 4cm C. 3cm D. 5cm

3
10 tháng 5 2022

Giúp với 

Câu 1: B

Câu 2: C

Câu 3: C

Câu 4: A

Câu 5: D

Câu 6: B

Câu 7: C

Câu 8: D

Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là...
Đọc tiếp

Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là: A. 20cm B. 5cm C. 10cm D. 15cm Câu 4: Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Độ dài đường trung tuyến AM là: A. 12cm B. 10cm C. 8cm D. 6cm Câu 5: Trong một tam giác, điểm cách đều ba cạnh là: A. Giao điểm ba đường trung tuyến B. Giao điểm của ba đường trung trực C. Giao điểm ba đường phân giác D. Giao điểm ba đường cao Câu 6: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là: A. Tam giác vuông B. Tam nhọn C. Tam giác cân D. Tam giác tù Câu 7: Cho tam giác ABC, M là trung điểm của BC, G là trọng tâm của tam giác ABC và AM=18cm. Độ dài đoạn AG là: A. 12cm B. 6cm C. 9cm D. 10cm Câu 8: Cho tam giác ABC cân tại A, các đường trung tuyến BC và CE cắt nhau tại G. Chọn khẳng định đúng trong các khẳng định sau: A. AG là tia phân giác của góc A của tam giác ABC B. AG là đường trung trực của BC của tam giác ABC C. AG là đường cao của tam giác ABC D. Cả ba khẳng định đều đúng Câu 9: Cho tam giác ABC cân tại A, BC = 10cm. Độ dài đường trung tuyến AM bằng 12cm. Khi đó độ dài AB là A. 12cm B. 13cm C. 11cm D. 10cm Câu 10: Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm A. Nằm bên trong tam giác B. Nằm bên ngoài tam giác C. Là trung điểm của cạnh huyền BC D. Trùng với điểm A Câu 11: Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là: A. 6cm B. 4cm C. 3cm D. 5cm

1

1A

2A

3C

4A

5C

6C

7A

10D

18 tháng 2 2018

* Do O  là tâm đường tròn ngoại tiếp tam giác ABC  nên O là giao điểm của 3đường trung trực của tam giác ABC. 

Lại có: M  là trung  điểm của BC nên  O M ⊥ B C (OM là 1 đường trung trực của tam giác) (1)

* Lại có H  là trực tâm của tam  giác ABC  nên:  A H ⊥ B C (2)

Từ (1) và (2) suy  ra:  OM // AH.

* Nếu  tam giác ABC nhọn thì O nằm trong tam giác ABC nên  A H → ,   O M →  cùng hướng

* Nếu  tam giác ABC tù thì O nằm ngoài tam giác ABC nên  A H → ,   O M →  ngược hướng.

Đáp án A

7 tháng 5 2019

21 tháng 9 2023

Tham khảo:

+) Xét tam giác HBC ta có :

HD vuông góc với BC \( \Rightarrow \) HD là đường cao tam giác HBC

BF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)BF là đường cao của tam giác HBC

CE vuông góc với HB tại E ( kéo dài HB ) \( \Rightarrow \)CE là đường cao của tam giác HBC

Ta kéo dài HD, BF, CE sẽ cắt nhau tại A

\( \Rightarrow \) A là trực tâm tam giác HBC

 

+) Xét tam giác HAB ta có :

HF vuông góc với AB \( \Rightarrow \) HF là đường cao tam giác HAB

BH vuông góc với AE tại E ( kéo dài HB ) \( \Rightarrow \)AE là đường cao của tam giác HAB

BD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)BD là đường cao của tam giác HAB

Ta kéo dài HF, BD, AE sẽ cắt nhau tại C

\( \Rightarrow \) C là trực tâm tam giác HAB

 

+) Xét tam giác HAC ta có :

HE vuông góc với AC \( \Rightarrow \) HE là đường cao tam giác HAC

AF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)AF là đường cao của tam giác HAC

CD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)CD là đường cao của tam giác HAC

Ta kéo dài CD, HE, AF sẽ cắt nhau tại B

\( \Rightarrow \) B là trực tâm tam giác HAC.

a: Vì góc A nhọn nên chắc chắn tam giác ABC không thể vuông cân

=> Loại

b: Gọi giao điểm của BH và AC là K

=> BK\(\perp\)AC tại K

Ta có: ΔABK vuông tại K

nên \(\widehat{ABK}+\widehat{BAK}=90^0\)

hay \(\widehat{BAC}=60^0\)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)

nên ΔABC đều

23 tháng 8 2021

bạn giúp mk câu nữa được k ạ

 

4 tháng 10 2017

a, BHCK có I là trung điểm hai đường chéo

b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK

c, Ta có OI là đường trung bình của ∆AHK => OI//AH

d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM