K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2024

A=4/6​×3/2​+6/3​×4/5​+…+200/99​×100/101​ =23+45+…+100101=32​+54​+…+101100​

𝐴=23(1+23+34+…+5051)A=32​(1+32​+43​+…+5150​)

 so sánh AB:

𝐴=23(1+23+34+…+5051)A=32​(1+32​+43​+…+5150​)

Ta thấy mỗi phân số trong ngoặc lớn là một phần tử trong dãy aritmetically increasing, và mỗi phần tử này lớn hơn 1.

Do đó, ta có thể kết luận rằng 𝐴>𝐵A>B.

26 tháng 5 2024

Bạn làm thế này nhanh hơn này 

A= 2/1.3+2/3.5+........+2/99.101 

A = 1/1-1/3+1/3-.......-1/101

A= 1/1-1/101

A=100/101 < 1 < 3/2

9 tháng 12 2023

Giải thích:

Để so sánh giá trị của biểu thức A với 3/2, ta cần tính giá trị của biểu thức A và so sánh nó với giá trị của 3/2.

 

Lời giải:

Để tính giá trị của biểu thức A, ta thực hiện các bước sau:

1. Tính tử số và mẫu số của từng phân số trong biểu thức A.

2. Tính giá trị của từng phân số.

3. Cộng tất cả các giá trị đã tính được.

 

Đầu tiên, ta tính tử số và mẫu số của từng phân số trong biểu thức A:

- Tử số của phân số thứ nhất là 4, mẫu số là 1.2.3.

- Tử số của phân số thứ hai là 6, mẫu số là 2.3.4.

- Tử số của phân số thứ ba là 8, mẫu số là 3.4.5.

- ...

- Tử số của phân số cuối cùng là 200, mẫu số là 99.100.11.

 

Tiếp theo, ta tính giá trị của từng phân số:

- Giá trị của phân số thứ nhất là 4/(1.2.3) = 4/6 = 2/3.

- Giá trị của phân số thứ hai là 6/(2.3.4) = 6/24 = 1/4.

- Giá trị của phân số thứ ba là 8/(3.4.5) = 8/60 = 2/15.

- ...

- Giá trị của phân số cuối cùng là 200/(99.100.11).

 

Cuối cùng, ta cộng tất cả các giá trị đã tính được:

A = (2/3) + (1/4) + (2/15) + ... + (200/(99.100.11)).

 

Sau khi tính giá trị của biểu thức A, ta so sánh nó với giá trị của 3/2 để xác định mối quan hệ giữa chúng.

Tra bài tập tại Checkmath là ra 

😀😀

20 tháng 7 2023

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

25 tháng 3 2019

Rút gọn mỗi số hãng của số ta được :

\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

     \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

     \(=1-\frac{1}{101}=\frac{100}{101}\)

Vậy C = 100/101

25 tháng 3 2019

\(C=\frac{4}{1.2.3}+\frac{8}{3.4.5}+\frac{12}{5.6.7}+...+\frac{200}{99.100.101}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}\)

\(=\frac{100}{101}\)

27 tháng 10 2016

Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101

A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ............ + 99.101 (103 - 3)

A = (1.3.5 + 3.5.7 + 5.7.9 + .......... + 99.101.103) - (1.3.3 + 3.5.3 + ....... + 99.101.3)

A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + ...... + 99.101)

A = 13517400 - 3.171650

A = 13002450

27 tháng 10 2016

1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100

4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4

4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100

4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101

4S=98.99.100.101

Vậy S = 98.99.100.101/4 = 24497550

17 tháng 10 2017

1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)

2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)

3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)

.................

99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)

C = 1.2.3+2.3.4+3.4.5+.........+99.100.101

C= 1/4 . (99.100.101.102 - 98.99.100.101)

CHUC BN HOK GIỎI!

17 tháng 10 2017

25497450

18 tháng 5 2016

Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101  3S = 3.33.100.101 
 S=33.100.101= 333300

Đặt S = 1,2 + 2,3 + 3,4 + ... + 99.100

3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3

3S = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + 98.99 ( 100 - 97 ) + 99.100 ( 101 - 98 )

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... - 97.98.99 + 99.100.101 - 98.99.100

S = 33.100.101 = 333300

Vậy S bằng 333300

Đáp số : S : 333300

18 tháng 7 2017

Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)

\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)

\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)

\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)

\(=99.100.101.102-0.1.2.3\)

\(=101989800\)

\(\Rightarrow A=101989800:4=25497450\)

Vậy \(A=25497450.\)