Một cầu thang có 11 bậc. Andy có thể bước 1 bậc, 2 bậc hoặc 3 bậc mỗi lần. Bậc thứ 8 không bước lên được vì bị hỏng. Hỏi có bao nhiêu cách để Andy đi hết cầu thang này?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THAM KHẢO
Nếu chỉ có 1 bước thì David chỉ có thể đi theo (1). Nếu là 2 thì David có thể đi 2 cách, (1, 1) và (2). Nếu là 3 thì có thể đi (1, 1, 1), (2, 1), (1, 2) và (3), 4 thì là (1, 1, 1, 1), (1, 1, 2),...
Sau khi đếm số bước 4 bậc đầu tiên, ta có:
1 bậc=1 cách 2 bậc=2 cách 3 bậc=4 cách 4 bậc=7 cách
Từ 4 bậc đó, ta có thểthấy đây là quy luật Fibonacci, nhưng thay vì lấy tổng 2 số ta lấy tổng 3 số trước. Từ đó, ta có quy luật: 1, 2, 4, 7, 13, 24, 44, 81, 149,...
9 bậc = số thứ 9
Nên David có 149 cách để lên cầu thang đó. Đáp số: 149 cách
mình xin lỗi nếu khó hiểu nha vì thật sự là mình cũng ko chắc
Gọi \(S_n\) là cách thỏa ycđp
Muốn lên và xuống thang n bậc \(\left(n>3\right)\) có 3 cách :
- Bước tới bậc n-1 rồi bước 1 bậc để lên n và xuống 1 bậc: 1 cách.
- Bước tới bậc n-2 rồi bước 2 bậc để lên n, sau đó xuống 2 bậc hoặc bước lên tửng bậc, xuống từng bậc hoặc xuống 2 bậc: 3 cách.
- Bước tới bậc n-3 để lên n rồi xuống thang: 9 cách (lấy theo VD cho nhanh).
Ta có hệ thức truy hồi, với \(n>3\)3
\(S_n=S_{n-1}+S_{n-2}+S_{n-3}\)
Khởi tạo : \(S_1=1,S_2=3,S_3=9\)
Suy ra : \(S_{11}=157+289+531=977\) cách .