Tìm max của Q = x2.(3-x) vs x >=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{x}{x^2+2}\le\frac{x}{2\sqrt{2x^2}}=\frac{1}{2\sqrt{2}}\)
Dấu "=" xảy ra khi \(x^2=2\Rightarrow x=\sqrt{2}\)
\(\left(x-3\right)\left(4-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\) (vô lí)
hoặc \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)
Vậy \(x=\Phi\)
\(C=-x^2+5x-\left(\frac{5}{2}\right)^2+\left(\frac{5}{2}\right)^2\)
\(C=\left[-x^2+5x-\left(\frac{5}{2}\right)^2\right]+\left(\frac{5}{2}\right)^2\)
\(C=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]+\frac{25}{4}\)
\(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\Leftrightarrow-\left(x-\frac{5}{2}\right)^2\le0\)
\(\Rightarrow C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy \(GTNN_C=\frac{25}{4}\)tại \(x=\frac{5}{2}\)