Cho n đường thẳng trong đó bất kì hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào cùng đi qua một điểm. Biết rằng số giao điểm của các đường thẳng đó là 190. Tính n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với đường thẳng còn lại, do đó có giao điểm.
- Đường thẳng thứ hai giao với đường thẳng còn lại, do đó có giao điểm.
...
- Đường thẳng thứ giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ giao với đường thẳng còn lại, do đó có 1 giao điểm.
Do tổng số giao điểm là
Ta có
=>n(n−1)2=1128
<=>n(n−1)=2256
<=>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017.
Khi đó ta có
=>n(n−1)=2017.2
<=>n(n−1)=4034
<=>n(n−1)=2.2017
Vậy không thể có số giao điểm là 2017.
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với n−1 đường thẳng còn lại, do đó có n−1 giao điểm.
- Đường thẳng thứ hai giao với n−2 đường thẳng còn lại, do đó có n−2 giao điểm.
...
- Đường thẳng thứ n−2 giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ n−1 giao với đường thẳng còn lại, do đó có 1 giao điểm.
Vậy tổng số giao điểm là
(n−1)+(n−2)+⋯+2+1=n(n−1)/2
Do tổng số giao điểm là 1128 nên ta có
n(n−1)2=1128
<−>n(n−1)=2256
<−>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017. Khi đó ta có
n(n−1)=2017.2
<−>n(n−1)=4034
<−>n(n−1)=2.2017
Ta thấy vế trái là tích của hai số tự nhiên liên tiếp, trong khi bên vế phải lại ko phải là tích 2 số tự nhiên liên tiếp.
Vậy không thể có số giao điểm là 2017.
a,Có n điểm đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có 3 đường thẳng nào đồng quy
=>Số giao điểm là:
n . (n-1) : 2=1128
n . (n-1)= 2256=48.47
=> n = 48
Vậy có tất cả 48 đường thẳng
b, không thể vì ko AD đc vào công thức \(\frac{n.\left(n-1\right)}{2}\)
học tốt
Bạn Nguyễn Ngọc Linh có thể trả lời lại phần b được không ạ. Bạn viết tắt mình không hiểu.
- Lần sau bạn đăng bài này lên lớp 8 nhé !
- Ta có công thức tính số giao điểm của n đường thẳng, trong đó bất cứ hai đường thẳng nào cũng cắt nhau:
T=\(\dfrac{n\left(n+1\right)}{2}\) (T là số giao điểm, n là số đường thẳng).
- Thay T=1128 vào T=\(\dfrac{n\left(n+1\right)}{2}\) , ta được:
\(\dfrac{n\left(n+1\right)}{2}\)=1128
=>n(n+1)=2256
=>n2+n-2256=0
=>n2+48n-47n-2256=0
=>n(n+48)-47(n+48)=0
=>(n+48)(n-47)=0
=>n+48=0 hay n-47=0
=>n=-48 hay n=47.
- Vì n>0 nên chọn n=47.
- Vậy số đường thẳng cần tìm là 47.
a) Vì 2 đường thẳng nào cũng cắt nhau nên 1 đường thẳng sẽ cắt 2015 đường còn lại mỗi đường 1 lần => Có 2016 . 2015 giao điểm.
Nhưng mỗi giao điểm ở đây được tính 2 lần nên sẽ có ( 2016 . 2015 ) / 2 = 2031120 ( giao điểm )
b) Tương tự câu a ta có n . ( n - 1 ) / 2 = 1128
=> n ( n - 1) = 2256 => n = 48
a) 1 đường thẳng cắt 30 đường thẳng còn lại ta được 30 giao điểm.
31 đường thẳng cắt 30 đường thẳng còn lại ta được 30x31=930 giao điểm.
Mà mỗi giao điểm được tính 2 lần nên có số giao điểm là:
930:2=465 (giao điểm).
Vậy...
Nếu thay 31 đường thẳng bởi n đường thẳng, n=bạn làm tương tự sẽ đc kết quả là \(\frac{n\times\left(n-1\right)}{2}\)
b) 1 đường thẳng cắt m-1 đường thẳng còn lại ta được m-1 giao điểm.
m đường thẳng cắt m-1 đường thẳng còn lại ta được mx(m-1) giao điểm.
Mà mỗi giao điểm đc tính 2 lần nên số giao điểm là: \(\frac{m\times\left(m-1\right)}{2}\) giao điểm.
Theo đề bài, ta có: \(\frac{m\times\left(m-1\right)}{2}=190\)
\(\Rightarrow m\times\left(m-1\right)=380\)(1)
Mà \(380=20\times19\)(2)
Từ (1) và (2) suy ra m=20.
Vậy...
20 đó **** mình nha