K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

25

k nha

30 tháng 9 2017

t a có pt 

<=> \(x^2-2009x-xy+5+y=0\Leftrightarrow x^2-2009x+5=xy-y\)

xét x=1 => ....

xét x khác 1 thì ta có 

<=> \(y=\frac{x^2-2009x+5}{x-1}\)

để y thuộc Z thì \(\frac{x^2-2009x+5}{x-1}=\frac{x^2-x-2008x+2008-2003}{x-1}\in Z\Leftrightarrow x-2008-\frac{2003}{x-1}\in Z\)

<=> x-1 là ước của 2003 đến đây tự giải tiếp

a: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

b: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10

11 tháng 8 2017

a)/x-2009/=2009-x

TH1:x-2009=2009-x=>x=2009

TH2:x-2009=-(2009-x)=>x-2009=x-2009 đúng với mọi x

b) (2x-1)^2008>=0

(y-2/5)^2008>=0

/x-y-z/>=0

=>2x-1=0

y-2/5=0

x-y-z=0(cái này dùng ngoặc nhọn)

=>x=1/2;y=2/5;z=1/10

27 tháng 3 2018

\(a)\) \(2009-\left|x-2009\right|=x\)

\(\Leftrightarrow\)\(\left|x-2009\right|=2009-x\)

Ta có : \(\left|x-2009\right|\ge0\)

\(\Rightarrow\)\(2009-x\ge0\)

\(\Rightarrow\)\(x\le2009\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}\Leftrightarrow\orbr{\begin{cases}x+x=2009+2009\\x=x\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=4018\\x=x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=x\end{cases}}}\)

Vậy \(x=2009\)

Chúc bạn học tốt ~ 

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

29 tháng 8 2023

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:
Từ PT(2) suy ra $x=a^2+4a-ay$. Thay vào PT(1):

$(a+1)(a^2+4a-ay)-ay=5$

$\Leftrightarrow (a+1)(a^2+4a)-y(a^2+2a)=5$

$\Leftrightarrow y(a^2+2a)=(a+1)(a^2+4a)-5=a^3+5a^2+4a-5$

Để $y$ nguyên thì $a^3+5a^2+4a-5\vdots a^2+2a$
$\Leftrightarrow a(a^2+2a)+3(a^2+2a)-2a-5\vdots a^2+2a$

$\Rightarrow 2a+5\vdots a^2+2a$

$\Rightarrow 2a^2+5a\vdots a^2+2a$

$\Rightarrow 2(a^2+2a)+a\vdots a^2+2a$

$\Rightarrow a\vdots a^2+2a$

$\Rightarrow 1\vdots a+2$
$\Rightarrow a+2=\pm 1$

$\Rightarrow a=-1$ hoặc $a=-3$

Thử lại thấy $a=-1$ thỏa mãn.