chứng minh phân số 8n+5/6n+4 tối giản
làm gấp giúp mik nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của (8n+5,6n+4)
Khi đó :8n+5 chia hết cho d
6n+4 chia hết cho d
Xét hiệu :4(6n+4)-3.(8n+5) chia hết cho d
=24n+16-24n+15 chia hết cho d
=16-15 chia hết cho d
=1 chia hết cho d =>d=1 hoặc -1(dpcm)
Xong
để cm 8n+5/6n+4 là PSTG thì phải cm 8n+5 và 6n+4 là hai số nguyên tố cùng nhau
Đặt ƯCLN(8n+5,6n+4)=d (d thuộc N;d>1)
8n+5:d => 3.(8n+5):d=>24n+15:d
6n+4 :d => 4.(6n+4):d=>24n+16:d
ta có (24n+16-24n+15):d
1:d=>d=1
vậy 8n+5/6n+4 là PSTG
Gọi \(d\inƯCLN\left(8n+5;6n+4\right)\)
\(\Rightarrow8n+5⋮d;6n+4⋮d\)
\(\Rightarrow3\left(8n+5\right)⋮d;4\left(6n+4\right)⋮d\)
\(\Rightarrow24n+15⋮d;24n+16⋮d\)
\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{8n+5}{6n+4}\) tối giản (đpcm)
a)Gọi ƯCLN(n + 1 ; 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d
\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản
a, Gọi d là ƯCLN\((8n+5,6n+4)\)
Ta có : \(\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3(8n+5)⋮d\\4(6n+4)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}}\)
\(\Leftrightarrow(24n+16)-(24n+15)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy : ....
\(b,2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x\cdot2^2-2^x=96\)
\(\Leftrightarrow2^x\left[2^2-1\right]=96\)
\(\Leftrightarrow2^x\cdot3=96\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
n+10 chia hết cho n+6
mà n+6 chia hết n+6
=> (n+10)-(n+6) chia hết cho n+6
=> n+10-n-6 chia hết cho n+6 } bài dưới cũng làm như vậy
=> 4 chia hết cho n+6
=> n+6 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n = {-5;-7;-4;-8;-2;-10}
(* loại n khi n kết hợp với 1 số nào đó làm mẫu =0)
Chắc bạn chép nhầm rồi chứ làm gì phải là CM p/s trên tối giản vì trên đã tìm giá trị nguyên của p/s đó rồi nên 2 p/s đó ko tối giản
-Chắc đề là tìm n để p/s trên tối giản đấy!
Bạn Phùng Quang Thịnh ơi đó là đề bài đúng. Cô giáo mình cho về nhà làm đấy. ☺
Gọi d là UCLN(8n+5;6n+4)
=>*8n+5 chia hết cho d =>3.(8n+5) = 24n+15 chia hết cho d
*6n+4 chia hết cho d => 4.(6n+4)=24n+16 chia hết cho d
Suy ra: (24n+16)-(24n+15) chia hết cho d
=>24n+16-24b-15 chia hết cho d
=>1 chia hết cho d
=>d chỉ có thể là 1
=>điều phải chứng minh
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Có trong câu hỏi tương tự đó bn
#Tham_khảo
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản