S=1+2+2+23+...+29
P=5 nhân28 So sánh S và P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
S = 1 + 2 + 22 + ... + 29
2S = 2 + 22 + 23 + ... + 210
2S - S = 210 - 1
S = 210 - 1
<=> 28.22 - 1
<=> 28.3
Vì 28.3 < 28.5 nên S < 28.5
S=1+2+22+23+......+29
=>2S=2+22+23+...+210
=>2S-S=(2+22+23+...+210)-(1+2+22+23+......+29)
=>S=2+22+23+...+210-1-2-22-23-...-29
S=210-1
ta có : (4+1).28=4.28+28=22.28+28=210+28
=>210-1<210+28 hay
S<5.28
S = 1 + 2 + 22 + 23 + ...... + 29
=> 2S = 2 + 22 + 23 + ... + 210
=> 2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ...... + 29)
=> S = 2 + 22 + 23 + ... + 210 - 1 - 2 - 22 - 23 - ... -29
S = 210 - 1
Mà (4 + 1) . 28 = 4 . 28 + 28 = 22 . 28 + 28 = 210 + 28
=> 210 - 1 < 210 + 28 hay S < 5 . 28
Trả lời:
\(\frac{23}{28}< \frac{24}{27}\)
Hok tốt!
_ _ _ _ _
Ta có ; \(S=1+2+2^2+.....+2^9\)
\(\Rightarrow2S=2+2^2+2^3+.....+2^{10}\)
\(\Rightarrow2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1=2^8.4-1< 2^8.5\)
Vậy S < P .
S=1+2+22+23+...+29
2S=(1+2+22+23+...+29).2
2S=2+22+23+...+29+210
2S-S=(2+22+23+...+210)-(1+2+22+23+...+29)
S=210-1
P=5.28=(1+4).28=1+22.28=1+210
Vì 210-1<210+1
=>S<P