K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

a)

$Mg + H_2SO_4 \to MgSO_4 + H_2$
$Mg + 2H_2SO_{4_{đặc}} \to MgSO_4 + SO_2 + 2H_2O$
$Cu + 2H_2SO_{4_{đặc}} \to CuSO_4 + SO_2 + 2H_2O$

Theo PTHH : 

n Mg = n H2 = 0,448/22,4 = 0,02(mol)

Mặt khác : n SO2 = 2,688/22,4 =0,12(mol)

4m gam X chứa 4n Cu và 0,02.4 = 0,08 mol Mg

Theo PTHH : n SO2 = n Cu + n Mg

=> n Cu = (0,12- 0 ,08)/4 = 0,01(mol)

Suy ra:  m = 0,01.64 + 0,02.24 = 1,12(gam)

b) $SO_2 + Br_2 + 2H_2O \to 2HBr + H_2SO_4$

n Br2 = n SO2 = 0,12(mol)

=> V dd Brom  = 0,12/0,02 = 6(lít)

26 tháng 10 2021

câu 5: 

x=3,6

y=6,4

câu 6: chụp lại đề

câu 7:

a)ĐKXĐ: \(x\ge0\)

\(3\sqrt{x}=\sqrt{12}\\ \Rightarrow9x=12\\ \Rightarrow x=\dfrac{4}{3}\)

b) ĐKXĐ: \(x\ge6\)

\(\sqrt{x-6}=3\\ \Rightarrow x-6=9\\ \Rightarrow x=15\)

26 tháng 10 2021

Câu 5: 

Áp dụng định lý Pi-ta-go ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{6^2+8^2}\\ \Rightarrow BC=10\)

Áp dụng HTL ta có: \(x.BC=AB^2\Rightarrow x.10=6^2\Rightarrow x=3,6\)

Áp dụng HTL ta có: \(x.BC=AC^2\Rightarrow x.10=8^2\Rightarrow x=6,4\)

NV
25 tháng 12 2020

\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)

\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)

\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)

28 tháng 12 2020

Dạ em cảm ơn ạ

5 tháng 1 2022

Ta có:x2+y2=25➝(x+y)2-2xy=25➝(x+y)2=1➝x+y=1.Đến đây bạn tự làm.

a: =>x=y+11

xy=60

\(\Leftrightarrow y^2+11y-60=0\)

\(\Leftrightarrow\left(y+15\right)\left(y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-15\\y=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=15\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(-3\le x\le\dfrac{3}{2}\)

Ta có:

\(4\sqrt{x+3}=2.2\sqrt{x+3}\le2^2+x+3=x+7\)

\(2\sqrt{3-2x}=2.1.\sqrt{3-2x}\le1^2+3-2x=4-2x\)

Do đó:

\(x+4\sqrt{x+3}+2\sqrt{3-2x}\le x+x+7+4-2x=11\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{matrix}\right.\) \(\Leftrightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(x^2+4x+5-2\sqrt{2x+3}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

15 tháng 12 2023

Bài IV:

1: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

2: Xét (O) có

MA,MB là các tiếp tuyến
Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD tại C

=>AC\(\perp\)DM tại C

Xét ΔADM vuông tại A có AC là đường cao

nên \(MC\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)

3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc HAM

Xét ΔAHM có AI là phân giác

nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)

Xét ΔOHA vuông tại H và ΔOAM vuông tại A có 

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOAM

=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)

=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)

Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)

=>\(HO\cdot IM=IO\cdot IH\)

a: Xét tứ giác AMCD có

I là trung điểm chung của AC và MD

góc AMC=90 độ

=>AMCD là hình chữ nhật

b: Xét tứ giác ABMD có

AD//BM

AD=BM

=>ABMD là hình bình hành

NV
12 tháng 4 2021

\(A=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(c+1\right)}+\sqrt{2c\left(a+1\right)}\)

\(A=\dfrac{1}{\sqrt{2}}\sqrt{4a\left(b+1\right)}+\dfrac{1}{\sqrt{2}}\sqrt{4b\left(c+1\right)}+\dfrac{1}{\sqrt{2}}\sqrt{4c\left(a+1\right)}\)

\(A\le\dfrac{1}{2\sqrt{2}}\left(4a+b+1\right)+\dfrac{1}{2\sqrt{2}}\left(4b+c+1\right)+\dfrac{1}{2\sqrt{2}}\left(4c+a+1\right)\)

\(A\le\dfrac{1}{2\sqrt{2}}\left[5\left(a+b+c\right)+3\right]=2\sqrt{2}\)

\(A_{max}=2\sqrt{2}\) khi \(a=b=c=\dfrac{1}{3}\)

12 tháng 4 2021

em cảm ơn nhiều!

10 tháng 2 2022

Cho mình hỏi sao cái bảng sao hàng thứ nhất điền vào 3 trừ hàng thứ 2 lại 2 trừ 2 cộng v rồi còn hàng thứ 3 nữa 1 cộg 3 trừ