K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4

Các số lẻ ko chia hết cho 3 có dạng \(6k+1\) hoặc \(6k+5\)

TH1: m, n cùng có dạng \(6k+1\Rightarrow\left\{{}\begin{matrix}m=6a+1\\n=6b+1\end{matrix}\right.\) với a;b nguyên

\(\Rightarrow n^2-m^2=\left(6a+1\right)^2-\left(6b+1\right)^2=12\left(a-b\right)\left(3\left(a+b\right)+1\right)\)

- Với a;b cùng tính chẵn lẻ \(\Rightarrow a-b\) chẵn \(\Rightarrow a-b\) chia hết cho 2 \(\Rightarrow12\left(a-b\right)⋮24\)

\(\Rightarrow n^2-m^2⋮24\)

- Với a;b khác tính chẵn lẻ \(\Rightarrow3\left(a+b\right)\) lẻ \(\Rightarrow3\left(a+b\right)+1\) chẵn \(\Rightarrow12\left(3\left(a+b\right)+1\right)⋮24\)

\(\Rightarrow n^2-m^2⋮24\)

TH2: n;m cùng dạng \(6k+5\) hay \(\left\{{}\begin{matrix}n=6a+5\\m=6b+5\end{matrix}\right.\)

\(n^2-m^2=12\left(a-b\right)\left[3\left(a+b\right)+5\right]\)

Tương tự như trên:

a, b cùng chẵn lẻ thì \(a-b\) chẵn; a, b khác tính chẵn lẻ thì \(3\left(a+b\right)+5\) chẵn

TH3: 1 số có dạng \(6k+1\), 1 số có dạng \(6k+5\)

\(\Rightarrow\left|n^2-m^2\right|=\left|\left(6a+1\right)^2-\left(6b+5\right)^2\right|=12\left|\left(a-b\right)\left[3\left(a+b\right)+1\right]-2\left(2b+1\right)\right|\)

a,b cùng chẵn lẻ thì \(a-b\) chẵn; a,b khác tính chẵn lẻ thì \(3\left(a+b\right)+1\) chẵn nên \(\left(a-b\right)\left[3\left(a+b\right)+1\right]-2\left(2b+1\right)\) luôn chẵn

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau  Giải (copy) Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại) nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại) Vậy m,n là những số lẻ  Gọi (m,n) = d => m2- 2023n2 ⋮...
Đọc tiếp

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau 

Giải (copy)

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)

nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)

Vậy m,n là những số lẻ 

Gọi (m,n) = d => m2- 2023n⋮ d2 ; mn ⋮ d2  mà m2- 2023n+ 2022 ⋮ mn nên 2022 ⋮ d2 

Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .

 

 

Em chưa hiểu tai sao 

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4

thầy Cao Lộc phân tích cho em với ạ

 

 

 

2
19 tháng 6 2023

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

19 tháng 6 2023

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

14 tháng 2 2016

bai toan nay kho

29 tháng 7 2016

242+1=(24+1)(24-1)

25.23

25chia het cho 25 

suy ra 25.23 chia hetcho 25

29 tháng 7 2016

ma cho mk hoi n o dau vay

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

29 tháng 10 2023

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

29 tháng 10 2023

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

16 tháng 9 2023

Đặt n = 3k \(\left(k\inℕ\right)\)

Khi đó P = 9k2 + 3k + 1 = 3k(3k + 1) + 1 \(⋮̸3\)

=> \(P⋮̸9\)

Tương tự với n = 3k + 1

P = 9k2 + 9k + 3 = 9k(k + 1) + 3\(⋮̸9\)

Với n = 3k + 2 

P = 9k2 + 15k + 7 = 3k(3k + 5) + 7 \(⋮̸3\Leftrightarrow P⋮̸9\)

=> ĐPCM 

27 tháng 8 2017

Ta có :

\(n^3-n=n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\)tích cùa STN lên tiếp chia hết cho 2

\(n\Rightarrow n+1;n-1\)tích  số chẵn chia hết cho 4

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\)chia hết cho 4

3 STN liên tiếp có 1 số chia hết cho 3

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\)chia hết cho 3

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2\cdot3\cdot4=24\)

\(\Rightarrowđcpm\)

27 tháng 8 2017

tơ đồng y vs Lê anh Tú

lam dung !

hiiii

13 tháng 3 2022

qqqqqqqqqqqqqq