6x^3+x^2=2x. Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
( x + 2 )3 - ( 2x + 3 )2 + ( 2x + 3 )( 2x - 3 ) = ( x - 2 )( x2 + 2x + 4 ) - 6x( x + 2 )
⇔ x3 + 6x2 + 12x + 8 - ( 4x2 + 12x + 9 ) + 4x2 - 9 = x3 - 8 - 6x2 - 12x
⇔ x3 + 10x2 + 12x - 1 - 4x2 - 12x - 9 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 - x3 + 6x2 + 12x + 8 = 0
⇔ 12x2 + 12x - 2 = 0
⇔ 2( 6x2 + 6x - 1 ) = 0
⇔ 6x2 + 6x - 1 = 0 (*)
Δ = b2 - 4ac = 62 - 4.6.(-1) = 60
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{60}}{12}=\frac{-3+\sqrt{15}}{6}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{60}}{12}=\frac{-3-\sqrt{15}}{6}\end{cases}}\)
Vậy ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
\(2x^4-6x^3+x^2+6x-3=0\)
\(\Leftrightarrow2x^4-2x^3-4x^3+4x^2-3x^2+3x+3x-3=0\)
\(\Leftrightarrow2x^3\left(x-1\right)-4x^2\left(x-1\right)-3x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-4x^2-3x+3\right)=0\)
Đã có đáp án:
2x^4-6x^3+x^2+6x-3=0
2x^4-6x^3-3x^2-2x^2-6x-3=0
2x^2(x^2-1)-6x(x^2-1)+3(x^2-1)=0
(x^2-1)(2x^2-6x+3)=0
=> { x^2-1=0 =>x=-1;1
Giả phương trình :(*) 2x^2-6x+3=0
4x^2-12x-6=0
(2x)^2-2.2x.3-3=0
(2x-3)^2- (√3)^2=0
( 2x-3)^2=(√3)^2
=> 2x-3=-√3 => 2x= 3-√3 => x=(3-√3)/2
2x-3=√3 => 2x=√3+3 => x=(√3+3)/2
Vậy x....
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
a, <=> x2 -2x +1 + 5x -x2 =8
<=> 3x +1 =8
<=> 3x = 7
<=> x= 7/3
b, thiếu đề
c, <=> 2x3 -1 + 2x(4 -x2) = 7
<=> 2x3 + 8x -23 = 8
<=> 8x =8
<=> x=1
\(6x^3+x^2=2x\)
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left[\left(6x^2+4x\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Rightarrow\)\(x=0\)
\(3x+2=0\)
\(2x-1=0\)
\(\Rightarrow x=0;\frac{-2}{3};\frac{1}{2}\)
Vậy\(x=0;\frac{-2}{3};\frac{1}{2}\)
(6*x)^3 hay 6*x^3